Jump to content

Banner.jpg.b89429c566825f6ab32bcafbada449c9.jpg

Gina

Beyond the Event Horizon
  • Posts

    45,326
  • Joined

  • Last visited

  • Days Won

    120

Blog Entries posted by Gina

  1. Gina
    This is my progress in buying, modifying and making 3D printers.
    Velleman kit UP Plus 2 - Proprietary 3D printer "GinaRep Pilot" created from the Velleman kit with variations and new parts "GinaRep Titan" - a larger printer with 300mm cube print capacity "GinaRep Giant" - larger still with over 400mm cube capacity "GinaRep Mini" - a replacement for the Pilot with improved accuracy and printing speed  
  2. Gina
    This is basically a mechanical perpetual calendar with 3D printed plastic parts but whether I drive it from a clock with hands etc. or simply from a stepper motor remains to be decided.  The display consists of drums with numbers and letters stuck on.  Each drum is driven from specialised gears and levers.  The mechanism is designed to be visible and show the workings.
  3. Gina
    I've offered to give a talk with pictures to our local social group and thought a Blog on here would be a good place to prepare and assemble it.  Also, I would welcome any comments and suggestions.  I have a few ideas and will see how it progresses.  I will probably take me several days to get my initial ideas sorted out.
  4. Gina
    INTRODUCTION
    This is a tutorial explaining how to install an operating system and software into a micro SD card to use in a Raspberry Pi 3B+ for astro imaging and control of the relevant hardware.  The software to capture images, control camera cooling and other things such as the mount etc. is called INDI and provides a set of drivers to control all the hardware. The Raspberry Pi will run in what is called "headless" mode - meaning that no human interfaces are directly connected to the RPi - instead the RPi is connected to the local area network (LAN) using either Ethernet (preferred for speed and reliability) or WiFi.  Everything is then controlled from indoors on a computer also connected to the LAN.  This computer is called a "client" and the Raspberry Pi a "server".
    This tutorial will detail all the steps involved in installing the operating system and software - there are rather a lot of them, hence the need for a tutorial but there is a script that is downloaded that does all the difficult stuff.  I believe that anyone with some knowledge of computers should be capable of following these steps and setting up a working Linux based astro imaging system.  The Raspberry Pi can be put on the pier (or tripod) or even directly on the telescope mounting and would replace a laptop for instance, reducing the use of long cables etc.
    The operating system used is Ubuntu Mate and involves using a monitor, keyboard and mouse (or trackball) in order to set up the operating system and enable remote control before the RPi can be used headless in the observatory or on a tripod.  The Raspberry Pi is a "proper" computer though a bit slower and with less storage space that a desktop or laptop.  When powered up the operating system goes into a setup routine and you just have to answer the questions, same as when setting up any computer.  Near the beginning there's an opportunity to set up WiFi so you'll need your WiFi password.
  5. Gina
    INTRODUCTION
    This is a tutorial explaining how to install an operating system and software into a micro SD card to use in a Raspberry Pi 3B or Raspberry Pi 3B+ for astro imaging and control of the relevant hardware.  The software to capture images, control camera cooling and other things such as the mount etc. is called INDI and provides a set of drivers to control all the hardware. The Raspberry Pi will run in what is called "headless" mode - meaning that no human interfaces are directly connected to the RPi - instead the RPi is connected to the local area network (LAN) using either Ethernet (preferred for speed and reliability) or WiFi.  Everything is then controlled from indoors on a computer also connected to the LAN.  This computer is called a "client" and the Raspberry Pi a "server".
    This tutorial will detail all the steps involved in installing the operating system and software - there are rather a lot of them, hence the need for a tutorial but there is a script that is downloaded that does all the difficult stuff.  I believe that anyone with some knowledge of computers should be capable of following these steps and setting up a working Linux based astro imaging system.  The Raspberry Pi can be put on the pier (or tripod) or even directly on the telescope mounting and would replace a laptop for instance, reducing the use of long cables etc.
    The operating system used is Ubuntu Mate and involves using a monitor, keyboard and mouse (or trackball) in order to set up the operating system and enable remote control before the RPi can be used headless in the observatory or on a tripod.  The Raspberry Pi is a "proper" computer though a bit slower and with less storage space that a desktop or laptop (called a Single Board Computer).  When powered up the operating system goes into a setup routine and you just have to answer the questions, same as when setting up any computer.  Near the beginning there's an opportunity to set up WiFi so you'll need your WiFi password if you want to use WiFi.  This section can be skipped if using Ethernet cable rather than WiFi.
  6. Gina
    I'm new to blogs - never used them before so I don't know what I'm doing   I'll just experiment and see what happens...
  7. Gina
    Having played with water cooling for astro cameras and seen this applied to 3D printers instead of fan and fins for cooling hotends but at high cost, I though I would like to try myself.  I have reasonable DIY skills   Some filament types benefit from a heated chamber and warm air is not so good for cooling.  This is one example where water cooling is particularly beneficial.  Another benefit should be reduced weight for the X carriage permitting faster acceleration and deceleration for fast printing.
  8. Gina
    This is a dual imaging rig using two ZWO ASI1600MM-Cool CMOS cameras and matching vintage SLR film camera lenses.  There will be no filter wheel and there will be one fixed filter per camera.  These will be Astrodon 3nm Ha and OIII.  A common 3D printed dew shield will be used.  This rig will be fully remotely operated with remote focussing and mount control using INDI/KStars/Ekos software and a Raspberry Pi to operate the rig.
  9. Gina
    This is based on the ZWO ASI1600MM-Cool CMOS astro camera and vintage film SLR camera lenses.  In particular the Asahi Pentax Takumar, Super Takumar and Super Multi-Coated Takumar lenses.  I plan to use this rig for LRGB and where I have only one lens of a particular focal length for NB imaging.  Between these is the ZWO EFWmini filter wheel.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue. By using this site, you agree to our Terms of Use.