I wrote some code to do ordinal arithmetic in Haskell and am now trying to use Liquid Haskell to verify certain properties. However, I'm having trouble "reflecting" recursive functions. I've isolated a problem in the "less than" function below:

```
-- (Ord a n b) = a^n + b
{-@ data Ordinal [size] = Ord { a :: Ordinal, n :: Nat, b :: Ordinal }
| Zero {} @-}
data Ordinal = Ord Ordinal Integer Ordinal
| Zero
deriving (Eq, Show)
{-@ measure size @-}
{-@ size :: Ordinal -> Nat @-}
size :: Ordinal -> Integer
size Zero = 1
size (Ord a n b) = (size a) + 1 + (size b)
{-@ inline ordLT @-}
ordLT :: Ordinal -> Ordinal -> Bool
ordLT _ Zero = False
ordLT Zero _ = True
ordLT (Ord a0 n0 b0) (Ord a1 n1 b1) =
(ordLT a0 a1) ||
(a0 == a1 && n0 < n1) ||
(a0 == a1 && n0 == n1 && ordLT b0 b1)
one = (Ord Zero 1 Zero) -- 1
w = (Ord one 1 Zero) -- omega
main = print w -- Ord (Ord Zero 1 Zero) 1 Zero
```

Executing `liquid ordinals.hs`

with just the above gives the following error:

```
Error: Cyclic type alias definition for `Main.ordLT`
14 | {-@ inline ordLT @-}
^^^^^
The following alias definitions form a cycle:
* `Main.ordLT`
```

So what is the proper way to reflect recursive functions? I've read the liquid haskell tutorial but I can't figure out what its examples are doing differently.

`reflect`

, but I'm afraid I haven't used LH much yet github.com/ucsd-progsys/liquidhaskell/blob/develop/README.md`NewProofCombinators`

rather than`ProofCombinators`

.