Jump to content

Stargazers Lounge Uses Cookies

Like most websites, SGL uses cookies in order to deliver a secure, personalised service, to provide social media functions and to analyse our traffic. Continued use of SGL indicates your acceptance of our cookie policy.

Bajastro

Observations of the Capella spectroscopic binary

Recommended Posts

This system consists of two yellow giants having types G0III and G8III (some sources give K0III), similar masses and brightness. The orbital period of the components is 104 days.

The fact that one of the stars has a later spectral type is very convenient ūüėÄ. It¬†has stronger spectral lines of metals, including sodium.

This allows you to immediately recognize which star is approaching and which is currently moving away.

I made 3 observations so far with using a DIY 3D printed LowSpec spectrograph in the version v2 designed by @Paul Gerlach and a 1800 l/mm holographic grating.

1536737272_CapellaNa.thumb.jpg.a504d6c24c94ed2b9190711f7350f20d.jpg

Based on these observations, the spectral spread for both observations for the sodium line is 0.79 Å (0.079 nm) or 4 pixels, which gives a difference of radial velocities of 40 km/s.

Assuming that component A belongs to G8III and component B to G0III:

2019-12-03 component A was moving at relative vr to the barycenter of the system of -20 km/s and component B was moving at a  relative vr of +20 km/s.

2020-01-23 component A was moving at a relative vr of +20 km/s and component B was moving at a relative vr of -20 km/s.

I called radial speeds relative, because the radial velocity of the Capella barycenter to the Solar System wasn't included.

 

I took the radial velocity of the Capella barycenter into account and I received this phase plot:

image.png.524a6a205ebe36151afa0af8ff93fe06.png

The background is the plot of radial velocities from paper:

M. Weber, K. G. Strassmeier, 2011, The spectroscopic orbit of Capella revisited

https://arxiv.org/pdf/1104.0342.pdf

Edited by Bajastro
  • Like 6

Share this post


Link to post
Share on other sites

Beautiful results! Makes me very happy to see the LOWSPEC being used this way. And also a bit envious because I don't have my equipment operationalūüėČ

Share this post


Link to post
Share on other sites

Nice result.  Did you allow for the change in the radial component of Earths orbital velocity between the dates ie make any heliocentric corrections?  

Cheers

Robin

Share this post


Link to post
Share on other sites

Thanks all.

I didn't use the calibration lamp. So, now I can only observe splitting of the spectral lines depending on the phase. In this case, movements of Solar System bodies were omitted.
But for better measurements precision of spectroscopic binaries with higher eccentricity orbits, I will need a good calibration module soon. My friend is constructing a calibration module for his LowSpec spectrograph.

Edited by Bajastro

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Recently Browsing   0 members

    No registered users viewing this page.

  • Similar Content

    • By Bajastro
      1. Alcyone (Eta Tauri, ő∑ Tau, 25 Tau) in the Pleiades open cluster, spectral type B7IIIe+A0V+A0V+F2V.
      This star is a multiple system, but my goal of observation was the H-alpha profile of the main component:

      Horizontal axis scaled to radial velocity:

       
      2. Pleione (28 Tau, BU Tau) also in M45, spectral type B8Vne, variable star, the brightness changes in range: 4.83 - 5.38 V. 
      This is the faintest star, which I observed with using APO 107/700 & Low Spec spectrograph 1800 l/mm. 
      It was difficult, but obervation was positive (high gain, exposure time 4 min):

       
      3. Tianguan (Zeta Tauri, ő∂ Tau), spectral type B1IVe+G8III: (mark¬†":" according to the VSX database means uncertainty).
      This is an eclipsing binary with variability type E/GS+GCAS, period is 133 d. The brightness changes in range: 2.80 - 3.17 V.

       
      4.¬†Cih, Tsih (ő≥ Cas), spectral type B0.5IVpe, variable star¬†with a magnitude range of¬†1.6¬†to 3 V:

       
      5.¬†Alnitak (Zeta Orionis, ő∂ Ori), spectral type O9.5Ibe+B0III. Variable star with a magnitude range of¬†1.74 to 1.77 V.
      Spectral lines have characteristic P Cygni profile, below H-alpha:

    • By Bajastro
      Recently I observed profiles of hydrogen Balmer lines in Sirius spectrum with spectral type A. I used LowSpec spectrograph with 1800 l/mm diffraction grating and APO APM 107/700 on HEQ5 mount.
      H-alpha:

      H-beta:

      H-gamma:

      H-delta & H-epsilon:

      I had some problems with stacking, so I used the best single frames in analysis.
    • By Kcks Regulus Star
      On the 2nd of July I closed my curtains one night before I went to bed but, before they were shut I noticed a strange multicoloured light flickering low in the sky in the northern celestial hemisphere. I Thought to myself if that is a star it looks amazing. The next night (3rd of July) I decided to take another look at this multicoloured light which was still there, Only this time I used my binoculars, I was seeing blues, greens & reds. We have all seen stars by looking up into the sky but, I have never seen a star create multi colours before. It makes you feel excited inside and you think that no one else can see this until you tell them and share the same experience together. I believe I was looking at the Capella Star which is the brightest star in the constellation Auriga and your not kidding it is bright. I cant wait to have another look tonight to see if the multi colours are still there. I would like to have taken at picture of it but I am not setup to do that just yet as I am very new to star gazing. I wish someone here can confirm what I saw and to post a picture of it would be awesome. 
      Nikon Prostaff 3s 8 x 42
    • By ejp1684
      I've called it LOWSPEC.2 as it's the updated version of Paul Gerlach's LOWSPEC, a DIY 3D printed spectrograph. I built the first version but had trouble aligning the guide mirror (which was fixed), and locating the slit by waving a torch down the scope made it difficult to use.
      The updated version is a vast improvement, for me at any rate.
      1. The guide mirror can now be adjusted forward and backwards and side to side. I can now actually guide the spectrograph.
      2. Adding an Illumination device (Baader). The slit can now be illuminated and the overlay in PHP2 used to locate it. No more trouble getting the star on the slit.
      There is also the option to use a 30mm dia camera lens instead of 24mm. The camera lens used is 100mm focal length; I had a 30mm dia lens left over from a previous diy project which is 90mm focal length so I used that. I'm not sure of its quality as I bought it for £15 from ebay, but it seems to work ok.
      I also had a defraction grating of 600 l/mm from a previous project so used that. Paul reckons LOWSPEC will now cope with anything up to a grating of 1800 l/mm.
      For calibration I used a Philips S10 starter bulb because I found some calibration charts for it, (I think on one of the French websites) and these bulbs are about £1 in B & Q, significantly less than the Relco ones (if you can get them). I made a hole in the top cover, made a container on the 3D printer and now I simply insert it when I need to get a calibration reading. Not the most practical solution but again, it seems to work. If Paul manages to add a calibration unit inside LOWSPEC, that would be the icing on the cake. And if it could just be attached to the existing body that would be a bonus, as it took me 29 hours to print!
      Here's a couple of shots of the thing itself.

      The long tube houses the Philips lamp.

      Here the calibration unit is inserted into the top cover.
      The first reasonably clear night was moonlit and there was high cloud coming and going, but I went first for Vega as it's easy to image and calibrate with the Hydrogen lines.

      The salmon coloured line is the A0V reference.
      The image of Vega looked quite good on the laptop, so I moved on to P Cygni, one of my favourite subjects, and here are the results.




      I've taken some of the readings from a PDF version of Richard Walker's 'Spectroscopic Atlas for Amateur Astronomers'. It doesn't seem to be available for download any more, I think there's now a book which you have to buy.
      I may need to get a better guide camera; I'm using an Altair Astro GPCAM mono and when guiding it used a star with a S/N ration of 9.8, the brightest available. But having said that, it managed to keep P Cygni on the slit for 5 minutes at a time.
      LOWSPEC is a great project if you've started out using the StarAnalyser and want to move to a higher resolution. It takes a lot of patience and persistence, but worth it. I reckon the total cost for LOWSPEC is about a quarter of the cost of an equivalent 'off the shelf' spectroscope, so if you can't justify spending loads of dosh then this is a viable option.
      Eric.
√ó
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.