Jump to content

Stargazers Lounge Uses Cookies

Like most websites, SGL uses cookies in order to deliver a secure, personalised service, to provide social media functions and to analyse our traffic. Continued use of SGL indicates your acceptance of our cookie policy.

Sign in to follow this  
henryhudson

Solar Eclipse and the EXOS-2GT Mount

Recommended Posts

Hello all,

I have been researching for the past two months what equipment I will need to buy to photograph the upcoming solar eclipse, I have everything under control except the goto mount.  Because I am new to this, forgive me if I have made any false assumptions or have any misunderstandings.

So after going back and forth with my short-term goals, long-term goals, and budget, I have decided I want an equatorial mount since I have read that alt-az mounts are not well-suited for 30~60 second exposures, due to image rotation.  Although the price is a little higher, I figure it is worth it since I want to be able to use the mount for non-eclipse photography in the future, like star clusters, planets, the moon, etc. .

So I have my eyes squarely set on the EXOS-2GT, for its capabilities and its price point -- I really can't go higher than this price at this time.

But I have struggled to answer some basic questions about this mount that I'm hoping you all may be able to tell me:

Can the mount be aligned during the day?  Can I use the sun for alignment?  Other clever ways to align during the day that don't involve aligning before sunrise?

Is the tripod interchangeble?  Is there any reason why I may not want to use a shorter tripod than the one supplied with the mount?  (this is purely for travel convinience, and reuse with other equipment)

Is there any other eq tracking mount within this price range that you think is better for my needs?  Is there any reason you would not recommend this mount for my needs?

And lastly, can it be controlled from a laptop? (this is not for the eclipse, but in general, if I can re-use the mount to do precisely panned video, or panning time lapse video, it would be a big plus)
(I'm assuming this mount does not have a shutter release port, is that correct?)
(on this note, I am aware of cheaper alt-az mounts that do have this capability, but as mentioned above, i would rather go with an eq)

Thank you so much, and do clue me in on anything else you think I should know.

Share this post


Link to post
Share on other sites

Hello and welcome to SGL. You have not mentioned anything about which telescope you intend to use with the mount, which may dictate its suitability. The Bresser / Explore Scientific Exos 2GT is a clone of the Vixen Super Polaris and was originally a Meade LXD75. A thread on Cloudy Nights has mixed reviews of the mount, some good some not so. 

Share this post


Link to post
Share on other sites
4 hours ago, Cornelius Varley said:

Hello and welcome to SGL. You have not mentioned anything about which telescope you intend to use with the mount, which may dictate its suitability. The Bresser / Explore Scientific Exos 2GT is a clone of the Vixen Super Polaris and was originally a Meade LXD75. A thread on Cloudy Nights has mixed reviews of the mount, some good some not so. 

Right, for now I plan to use an 800 mm f/8 lens attached to a DSLR camera.  Combined weight should be close to 5 pounds.

Before I began to consider the EXOS 2GT I was considering the Sky-Watcher AllView, which would work perfectly for the solar eclipse but is not equatorial.

I may be convinced to go with the AllView if the EXOS 2GT is majorly problematic, I would rather have a good alt-az mount than a bad eq mount.  My mind changes every few hours these days, which is why I've finally decided to come to the astro forums and seek some input from people who know, live and breathe this stuff.

Also, something I notice generally about reviews of expensive products: it is hard to tell if the reason why a product gets a poor review is that it is actually bad or is it just "bad" because the reviewer prefers models double the price?  In photography for instance, some lenses get negative reviews because the reviewer is comparing them to the $1000+ equivalent ... that does not make the $200 lens "bad" though.

Edited by henryhudson
typoe

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Recently Browsing   0 members

    No registered users viewing this page.

  • Similar Content

    • By johnno0015
      An image created by the NASA visualisation studio of what a lunar eclipse would look like from the surface of the moon! Pretty cool right? If you want to get a better understanding of what is happening and why, you can checkout this article HERE which goes into the theory behind it all and also shows you what a solar eclipse would look like from the surface of the moon. 
       

    • By Spider-Man
      Hi everyone,
      I'm looking to get a reasonably portable astrophotography set-up, using a 60-100mm refractor, with a suitable goto mount.  I spotted the Explore Scientifice exos2-gt with pmc-eight goto system, which looks like quite an elegant solution, and wondered if anybody in the forum owns this mount, and what they think of it's performance & usability?
    • By Andy_ZH
      Hello all,
       
      this is my first post at SGL, and it will be quite long. I am not native a English speaker, so please excuse any mistake.
       
      I have quite some plan with my telescope mount and its goto control, and I am looking for some feedback and comments. If somebody else did a similar project, please let me know. And please feel free and encouraged to make suggestions, ideas, critics, etc.
      The story in a few buzzwords: Raspberry Pi Zero → direct control of TMC2209 stepper drivers via the Pi's Uart serial interface to drive my telescope mount. I am writing a software (optionally: open source?) to control the mount. The language will NOT be C, as typically used for Microcontrollers (I know for instance OneStep)
      I am using Kotlin, which is a more advanced JVM language.
       
      I think this should be enough information to filter the readers who are interested in reading the rest of my post.
       
      Now the long and detailed story:
      My professional background: I am a physicist, and did a PhD in EE (Power Electronics). Later, I became software engineer. Besides being fascinated by Astronomy, I am a tinkerer (Reprap 3D printer, electronics, …). I did grind my first mirror (a 6'' Schiefspiegler) when I was 15 years old, and I built the cookbook CCD cameras in the 90's.
      After many years without a telescope (study time, relationship, ... ), I settled down with my family, and I started to get back to Astronomy.
      Recently, I did by a quite a massive second hand mount: the “Vixen New Atlux” from another other stargazer in Switzerland. My opinion is that the New Atlux' mechanical design is superb. It has (had...) internal wiring, the counterweight bar can be hidden in the mount for transport, good polar alignment screws, it has an excellent polar finder with a dimmable LED.
      But on the other hand the electronics: two weak servo motors in combination with the incredible Starbook 5.... Seigh... the starbook...(!) it is, well... the mount is just superb, and no more comments about the starbook game boy, which shall rest in peace at the garbage dump.
      I removed the servos and all electronics, and I put 2 stepper motors into the mount, which are coupled to the gear with a timed belt. My original plan was to put an Arduino into the mount in order to control the steppers. I have an old goto Celestron cg-5 with Starsense, and it would have been quite easy to mimic - with the Arduino as interface – the servos of the old cg-5 and translate the Starsense control signals to my New Atlux. I can write C, and there is even an open source project called OneStep, which uses a Microcontroller in a similar way as I do.
      But I don't like to write C code anymore. In the 3D printer community, people need to use real time electronics to control the printer steppers. Due to the real time requirement, C with a real time microcontroler (Arduino & similar) are the only option for 3D printers.
      Do we need real time for our telescope? No. We don't need to control a lot of Motor accelerations and high speed control. For the telescope, we need to set the Motors speed precisely, and we need to drive to any position in an accurate and controllable and slow way.
      Then, there are new stepper motor drivers available with as much as 256 microsteps. The TMC2209 stepper driver , which is very well know in the 3D printer community, is not vibrating at all. It runs just smoothly, also at very low speeds. I do drive my motor with 0.25 rpm (sideral speed). In case of a slew, I can accelerate to 1500x sideral speed, which also would allow me easily to track the ISS. Wonderful.
       
      The current status of my project is:
      The mount is equipped with the two new motors The TMC2209 drivers are connected to the Raspberry pi GPIO Interface, and I can control them via Software. Theoretically, I could attach up to 4 motors with a single Uart interface (1 wire protocol). For instance, a focuser or a filter wheel could be attached. I selected Kotlin as language. Java also would have been possible, but I think for a new project, Kotlin will lead to a much more readable code. The TMC drivers can be driven via a chip-internal clock signal. Different to what the 3D printer community is doing (they use the step / dir pins, and create every single microstep with the microcontoller), I can send a “speed” signal from the Raspi via UART to the 2209 chip, and it will execute this speed for me without any further action. The only time critical issue was that I need to precisely count the steps that the 2209 stepper drivers executed. This is done via a GPIO pin, receiving its index signal (a pulse for every 2209 fullstep). Here comes the pain with Linux (non real-time) and the Pi: For user programs, it is impossible to guarantee that every pulse from the stepper drivers will be registered. But I cannot afford to have a step count drift over time. The solution was that I wrote a Linux kernel module in C. I wrote that I don't want to write any C code. Well, a few lines for the kernel module were indeed necessary. I can live with that, having in mind that the rest will be written in Kotlin. The only task of the Kernel module is to count every registered step at the Pi's GPIO input pins. This kernel module output is then mapped to a character device file in /dev/ for every stepper. In Kernel space, it is possible to register and count interrupts without missing even any one of them. From a hardware point of view, this is indeed everything we I need. The project cost so far: 2x10€ for the stepper drivers, 2x10€ for the motors, 2x20€ for the tooth belts and pulley, 10€ Pi Zero plus some peripheral expenses: Micro SD card, USB charger, and 1200 € for the used Vixen new Atlux mount. And a lot of time.
      I have so many ideas on how to extend the ecosystem of my software, but these ideas are for the longer term (maybe years from now on):
      Multi-star alignment. The alignment should be able to be updated continuously during an observation night. With a set of stars, it should be possible to calculate the quality of the aligment points, and e.g. drop them if they are errorneous. PEC correction (should be easy on the Pi) End-Stop support The polar alignment routines of today's goto scopes are quite good. But what I would like to have is some audio-feedback when I move the alignment screws into the right direction. Possibility to pre-plan an observation night (e.g. the mount could tell you that the Jupiter moon shadow will be on Jupiter in a few minutes). Record the telescope movements during the night in order to be able to tag any picture. The TMC drivers have much more capability than what I am using currently. For instance, they could be current controlled for slews in order to set the stepper current exactly to the value that it needs without stalling. This saves a lot of energy. The TMC drivers have a feature called “Stall Guard”. This could be used instead of endstop switches (for 3D-printers, this is done frequently). Advanced options for tracking: siderial, solar, moon speed, ISS speed. Tracking in both axis (e.g. to compensate polar misalignments of atmospheric refraction) or just in right ascension. Commercial mounts do not allow much customization here. With slow slew speeds, 5V input via a USB-C cable is sufficient for the Pi + Motors. Usb-C and newer usb battery packs allow to output a higher voltage via USB. With an “USB-trigger”, the input voltage can be selected to my needs. Higher voltage allows higher slew speeds, but consumes more power. Autoguider support, or even better: simply connect a webcam via the Pi's USB connector and do the guiding on the Pi The Raspberry Pi touch screen could be used for telescope controlls Advanced German mount limits and meridian flip control (e.g. a warning about a necessary flip when driving to a specific goto target). An Android App, connected via WiFi to the Pi could be used as display alternative Language control (have a look at Mycroft, an open-source artificial intelligence). "Hey mount, please slew to the whirlpool galaxy!" Control the mount via SkySafari and Stellarium The Pi has a built in camera interface. How about an open source auto align? The Pi could look at the stars to align itself, which makes a lot of sense. I did already order a long focal length lens and monochrome camera from Arducam in order to do some experiments (the standard Pi camera has 3.5 mm focal length and is not really usable, although star imagining is possible). My first observation site is my balcony. And there, the real Starsense does not work at all. It always spin-loops on 2 alignment positions where the sky is covered by the roof – how silly is that?. This can be done better. Further, Starsense is doing only a initial alignment. It should update its position and accuracy over the time! I think I could do this better.  
      Besides all my ideas, the first and most important focus of the software will be:
      Readability (therefore my choice of Kotlin), extensibility and open source. I like to have the Maths of the internal mount model clearly visible and understandable in the software. The calculations that are done within all our goto mounts are no rocket science. I admit, I am the nerd guy who wants to go the hard way and implement this from scratch.
      I am looking for a good project name, do you have any suggestions? How about QuickStep? this is possibly too close to OneStep and would offend the creators of OneStep?
      Does anyone of you have interest in joining my plan? Doing such a project in a small group would be more encouraging then just doing it for myself. And of course later on, I would appreciate if other stargazers would update their old mounts with my software.
       
      Any comments on my project plan are welcome!
       
      Clear Skies!
      Andy
       

    • By Hughsie
      I first came across the term ‘Solargraphy’ on this forum and was directed to website dedicated to the art of Solargraphy.
      This is a basic photographic method of recording the path of the Sun as the year progresses. This image commenced on 22 June 2019, the day after the Summer Solstice when the Sun was at its highest altitude in the noon day sky and finished on 22 December 2019, the Winter Solstice when the Sun is at its lowest point at noon. The silhouette of the neighbouring properties can also be made out in the picture.
      Using a basic pinhole camera I was able to record every clear day the track of the Sun across the southern sky, each day  the Sun’s altitude was getting slightly lower.
      Whilst the camera is basic, the main challenge is to avoid water damage and as you can see from the image some rain has managed to find its way inside. However, the pinhole camera is cheap to make with the following purchases made via Amazon;
      100 cable ties £5.49
      20 35mm plastic film canisters £8.88
      100 sheets of Ilford Multigrade 4 glossy photographic paper £25.98
      The remaining items were already in the house (drill bit, tinfoil, electrical and duct tape).
      Given the potential for disaster I made two pinhole camera’s and one of them provided this image, the other was washed out due to rain water getting in. Making more than one camera certainly improves the chances of success. The camera's themselves were attached with cable ties to the down pipe of the guttering and facing South.
      Anyone wishing to learn more about Solargraphy and how to construct the pinhole camera should check out Tarja Trygg's website http://www.solargraphy.com/index.php .

    • By Davehux
      *NOW SOLD*
      I've just blown all my pocket money on a Rowan belted HEQ5 Pro, so it's time to move on my trusty EQ5 GOTO, before my wife spots 2 tripods in my shed 😉
      I'm sure everyone knows these mounts, but just to say that it's in full working order, with just the usual wear marks here and there, and a few marker pen lines for Home and counterweight positions.
      Comes with 12V power lead and car cigarette plug, and sync lead with USB adapter to let you upgrade the firmware on the Synscan handset. It's currently at 4.39.05, which was the latest version a couple of months ago. There are 2 x 5kg counterweights as well.
      I still have the boxes for my HEQ5, so I can courier it within mainland UK included in the price. If you live elsewhere, we can work out a price.
      Yours for a sensible £350 - a new one will cost you around £575 from most of the usual retailers. Paypal Gift or Bank Transfer most welcome
      Thanks for looking
       
       





×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.