Jump to content

Stargazers Lounge Uses Cookies

Like most websites, SGL uses cookies in order to deliver a secure, personalised service, to provide social media functions and to analyse our traffic. Continued use of SGL indicates your acceptance of our cookie policy.

Search the Community

Showing results for tags 'pid'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome
    • Welcome
  • Beginners
    • Getting Started General Help and Advice
    • Getting Started Equipment Help and Advice
    • Getting Started With Observing
    • Getting Started With Imaging
  • Community
    • Official SGL Announcements and Events
    • StarGaZine
    • SGL Challenges and Competitions
    • SGL Star Parties
    • Star Parties & Astro Events
    • Celestial Events Heads Up
    • The Astro Lounge
  • Retailers
    • Sponsor Announcements and Offers
    • FLO Clearance Offers
    • IKI Observatory
    • Supplier Reviews
  • Astro Classifieds
    • For Sale / Swap
    • Wanted
  • Equipment
  • Observing
  • EEVA (Electronically Enhanced Visual Astronomy)
  • Imaging
  • Science
  • WADAS's WADAS Discussion Forum
  • Beaufort Club's Topics
  • Swindon Stargazers Club's Topics
  • East Midlands Stargazers''s Topics
  • Central Scotland Astro's Topics
  • SGL Cumbrian Skies's Topics
  • Herts, Beds and Bucks Group's Topics
  • SGL East Anglian Group's Topics
  • South Leicester Observers's Topics
  • South Wales Group's Topics
  • SGL Surrey Observers's Topics
  • South Yorkshire Stargazers's Topics
  • Yorkshire Astronomers's Topics
  • Devon and Cornwall's Topics
  • West Midlands's Topics
  • Essex Cloud Dodgers's Topics
  • Essex Cloud Dodgers's New equipment
  • NLO and Planetarium's Topics
  • Astronomical Society of Edinburgh's Discussion
  • Dorset Stargazers's Topics
  • Hairy Stars Club (Comets)'s Tutorials and Guides
  • Hairy Stars Club (Comets)'s General Discussion
  • Hairy Stars Club (Comets)'s Observing Campaigns
  • Hairy Stars Club (Comets)'s Analysis results
  • Hairy Stars Club (Comets)'s Useful Links
  • Pixinsight Users Club's Pixinsight Discussion Forum

Calendars

  • Astro TV
  • Celestial Events
  • SGL Calendar
  • Astro Society Events
  • Star Parties
  • WADAS's Events
  • Beaufort Club's Events
  • Astronomical Society of Edinburgh's Events
  • Dorset Stargazers's Events

Blogs

There are no results to display.

There are no results to display.


Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Interests


Location

Found 1 result

  1. For the past couple of months I've been working on a project which I named Arduheater. Arduheater is a full open source intelligent heat strip controller for astronomy usage. Source code is available at: https://github.com/jbrazio/arduheater The main design goals were: Remotely controllable This was a very important part of the design, most heat controllers, specially the DIY ones, rely on the PWM signal for each channel being manually adjusted by means of a potentiometer. This either requires the user to be near the device tweeking it or to set it to a temperature that may be higher than the one really needed thus completely trashing efficiency. Arduheater uses a serial connection so you can use any USB-Serial-TTL dongle to adjust it's settings either you're 2 or 2000 meters away. Efficient energy usage Manual adjusted heater will either require the user to be tweeking it or they will wast more energy than necessary due to the general tendency to use a higher that required setpoint, this is valid for any PWM or bang-bang style controllers. Arduheater uses a temperature sensor (DHT22) to measure basic environmental properties such as temperature and humidity, knowing them both makes the calculation of the dew point[1] possible. Arduheater also has a temperature sensor (NTC) for each heating strip, allowing the micro-controller to have a rough estimation of the temperature the equipment is at; it will be a rough estimation because we are really interested on the lenses surface temperature but we are actually measuring the heat strip temperature, to mitigate this, Arduheater allows the user to set specific offsets per heating strip. Arduheater uses a PID controller[2] to efficiently manage the energy so only the required amount of energy to maintain a temperature setpoint is delivered to the heating strip. This is possible due the usage of a PWM signal while driving the outputs; the delta between the environmental dew point (plus offset, i.e. setpoint) and the heating strip temperature will make the micro-controller output a PID-calculated PWM signal until this delta reaches zero. In practical terms if a 12V heating strip full on consumes 12W of power (1A) it may be possible for it to use only 1W or even less to keep the equipment above dewpoint and the power usage will be automatically updated during the night as conditions vary, so the system will be always using the least amount of power to keep the dew away. Builder friendly Using off-the-shelf components such as the Arduino Nano and easily available parts Arduheater is aimed to be build by anyone with a soldering iron and some patience, no degree in electronics required. Allow up to four independent heat outputs Each of the four outputs have independent controls such as offset, min and max output power and of course the three main properties of the PID controller (Kp, Ki and Kd). Here are some shots of the bench prototype using a power resistor as the heating element and it's serial configuration interface: The "field" prototype on it's box: The heating strips (more build info will be provided further ahead): And of course all of this would not be possible without the usage of the force. ;-) I hope someone may find this project useful. I'll keep this thread updated as soon as I'm able to release the source code, schematics and build instructions. [1] Dew point is that dreadful threshold at which water condensation starts to happen on the lenses/equipment. [2] A proportional–integral–derivative controller (PID controller) is a control loop feedback mechanism (controller) commonly used in industrial control systems.
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.