Jump to content

Walking on the Moon

Search the Community

Showing results for tags 'arduino'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Welcome
    • Welcome
  • Beginners
    • Getting Started General Help and Advice
    • Getting Started Equipment Help and Advice
    • Getting Started With Observing
    • Getting Started With Imaging
  • Community
    • Official SGL Announcements and Events
    • StarGaZine
    • SGL Challenges and Competitions
    • SGL Star Parties
    • Star Parties & Astro Events
    • Celestial Events Heads Up
    • The Astro Lounge
  • Retailers
    • Sponsor Announcements and Offers
    • FLO Clearance Offers
    • IKI Observatory
    • Supplier Reviews
  • Equipment
    • Discussions - Scopes / Whole setups
    • Discussions - Binoculars
    • Discussions - Mounts
    • Discussions - Eyepieces
    • Discussions - Cameras
    • Discussions - EEVA Equipment
    • Discussions - Software
    • DIY Astronomer
    • DIY Observatories
    • Member Equipment Reviews
  • Observing
    • Observing - Discussion
    • Observing - Reports
    • Observing - Solar
    • Observing - Lunar
    • Observing - Planetary
    • Observing - Deep Sky
    • Observing - Widefield, Special Events and Comets
    • Observing - with Binoculars
    • Observing and Imaging Double and Variable Stars
    • Sketching
  • EEVA (Electronically Enhanced Visual Astronomy)
    • EEVA - Discussion
    • EEVA - Reports
  • Imaging
    • Imaging - Discussion
    • Imaging - Tips, Tricks and Techniques
    • Imaging - Image Processing, Help and Techniques
    • Imaging - Smartphone / Tablets
    • Imaging - Lunar
    • Imaging - Solar
    • Imaging - Planetary
    • Imaging - Deep Sky
    • Imaging - Widefield, Special Events and Comets
    • Imaging - Showcase Threads
  • Science
    • History of Astronomy
    • Physics, Space Science and Theories
    • Radio Astronomy and Spectroscopy
  • WADAS's WADAS Discussion Forum
  • Beaufort Club's Topics
  • Swindon Stargazers Club's Topics
  • East Midlands Stargazers''s Topics
  • Central Scotland Astro's Topics
  • SGL Cumbrian Skies's Topics
  • Herts, Beds and Bucks Group's Topics
  • SGL East Anglian Group's Topics
  • South Leicester Observers's Topics
  • South Wales Group's Topics
  • SGL Surrey Observers's Topics
  • South Yorkshire Stargazers's Topics
  • Yorkshire Astronomers's Topics
  • Devon and Cornwall's Topics
  • West Midlands's Topics
  • Essex Cloud Dodgers's Topics
  • Essex Cloud Dodgers's New equipment
  • NLO and Planetarium's Topics
  • Astronomical Society of Edinburgh's Discussion
  • Dorset Stargazers's Topics
  • Hairy Stars Club (Comets)'s Tutorials and Guides
  • Hairy Stars Club (Comets)'s General Discussion
  • Hairy Stars Club (Comets)'s Observing Campaigns
  • Hairy Stars Club (Comets)'s Analysis results
  • Hairy Stars Club (Comets)'s Useful Links
  • Pixinsight Users Club's Pixinsight Discussion Forum
  • Club Europe's Club Europe Astro Chat

Calendars

  • Astro TV
  • Celestial Events
  • SGL Calendar
  • Astro Society Events
  • Star Parties
  • WADAS's Events
  • Beaufort Club's Events
  • Astronomical Society of Edinburgh's Events
  • Dorset Stargazers's Events

Blogs

  • Blog 16571
  • Blog 21603
  • Blog 26813
  • Blog 29136
  • peaceonyou's Blog
  • Blog 12649
  • Blog 16572
  • Telescope Project
  • Blog 26817
  • Blog 29137
  • Viewing the night sky through a Telescope
  • 2019/20 Challenge
  • Blog 12650
  • Blog 16575
  • Blog 21680
  • Blog 26819
  • Blog 29139
  • perks2008's Blog
  • AstroHeart UK
  • Blog 12652
  • Blog 16579
  • Blog 21702
  • Blog 26834
  • Blog 29156
  • Workshop Tinkering
  • Blog 12654
  • Blog 16597
  • Blog 21731
  • Blog 26845
  • Blog 29168
  • My Astronomy Life
  • Blog 12658
  • Blog 16609
  • Blog 21740
  • Blog 26846
  • Blog 29177
  • 2019 Observations
  • Blog 12663
  • Blog 16670
  • Blog 21790
  • Blog 26848
  • Blog 29180
  • papak's Blog
  • Astrophotography is hard.
  • Blog 12664
  • Blog 16672
  • Blog 21791
  • Blog 26850
  • Blog 29192
  • CptManering's Blog
  • Star Gazing Travels
  • Blog 12665
  • Blog 16698
  • Blog 21832
  • Blog 26857
  • Blog 29204
  • blackout's Blog
  • DIY stepper focuser
  • Blog 12668
  • Blog 16717
  • Blog 21884
  • Blog 26907
  • Blog 29209
  • Naemeth's Blog
  • New secondary mount for old Fullerscope
  • Blog 12673
  • Blog 16718
  • Blog 21939
  • Blog 26909
  • Blog 29211
  • TransparentBadger's Blog
  • SOUTH WEST ASTRONONOMY FAIR 2020
  • Blog 12674
  • Blog 16724
  • Domain backordering & monitoring service
  • Blog 26917
  • Blog 29215
  • M00NMonkey's Blog
  • How the buy stop order works
  • Blog 16725
  • Blog 21987
  • Blog 26927
  • Blog 29219
  • dobsonuser's Blog
  • Observation Log
  • Blog 12688
  • Blog 16729
  • Blog 22037
  • Blog 26930
  • Blog 29220
  • Tibbz's Blog
  • Astro-related Auction 'Lots'!
  • Blog 12692
  • Blog 16742
  • Blog 22067
  • Blog 26946
  • Blog 29225
  • Alfven's Blog
  • Celestron C8, C6, Explore Scientific 127 ED Triplet
  • Blog 12695
  • Blog 16752
  • Blog 22097
  • Blog 26950
  • Blog 29228
  • Jonathan's solar observations
  • Blog 12699
  • Blog 16759
  • Blog 22120
  • Blog 26986
  • Blog 29229
  • Planetary Geologist's Blog
  • Cosmic musings
  • Blog 12720
  • SOLAR OBSERVATION REPORTS
  • Blog 22157
  • Blog 26992
  • Blog 29232
  • harryt's Blog
  • Learn astronomy
  • Blog 12723
  • Blog 16799
  • Blog 27019
  • Blog 29236
  • perks2008's Blog
  • Activity Blog
  • Blog 12742
  • Blog 16802
  • Blog 22224
  • Blog 27021
  • Blog 29248
  • BIGFOOT's Blog
  • Blog 12744
  • Blog 16811
  • Blog 22231
  • Blog 27026
  • Blog 29249
  • BIGFOOT's Blog
  • Blog 12746
  • Blog 16841
  • Blog 22247
  • Blog 27049
  • Blog 29251
  • Ttyttt
  • New Zealand - Astro Memories
  • Blog 16843
  • Blog 22268
  • Blog 27053
  • Blog 29253
  • headphonesky's Blog
  • Blog 12757
  • Blog 16902
  • Blog 22271
  • Blog 27055
  • Blog 29255
  • nameunknown's Blog
  • Blog 12764
  • Blog 16903
  • Blog 22321
  • Blog 27059
  • Blog 29264
  • okbeautyfacial
  • Blog 12775
  • finderscope
  • Blog 22322
  • Blog 27061
  • Blog 29279
  • test's Blog
  • Blog 12776
  • Blog 16948
  • Blog 22413
  • Blog 27072
  • Blog 29280
  • jonathan's Oberving Blog
  • Blog 12787
  • Blog 16950
  • Blog 22419
  • Blog 27073
  • Blog 29286
  • leicestergeordie's Blog
  • Blog 12792
  • Blog 16963
  • Help required by another newbie :-/
  • Blog 27075
  • Blog 29289
  • Geryllax Vu's Blog
  • The dome has landed
  • Blog 16974
  • Blog 22490
  • Blog 27077
  • Blog 29293
  • dorothypenelope
  • Blog 12799
  • Blog 16984
  • Blog 22505
  • Blog 27080
  • Blog 29294
  • Liam Watters
  • Blog 12824
  • Blog 16988
  • Blog 22533
  • Blog 27082
  • Blog 29304
  • APPLE's Blog
  • Blog 12826
  • Blog 17025
  • Blog 22542
  • Blog 27099
  • Blog 29308
  • E3RCH's Blog
  • Blog 12828
  • Blog 17080
  • Blog 22548
  • Blog 27103
  • Blog 29310
  • Lab of Oz
  • Blog 12835
  • Blog 17104
  • Blog 22574
  • Blog 27105
  • Blog 29312
  • attewella's Blog
  • Blog 12838
  • Blog 17149
  • Nick's blog, including AOSX (Astronomy on OSX)
  • Blog 27121
  • Blog 29316
  • Spacecadet2010's Blog
  • Blog 12861
  • Blog 17154
  • Todd8137s adventure into space
  • Blog 27135
  • Blog 29332
  • inatthedeepend's Blog
  • Blog 12868
  • Blog 17157
  • Blog 22658
  • Blog 27138
  • Blog 29348
  • harrodleyla's Blog
  • Blog 12875
  • Blog 17176
  • Blog 22689
  • Blog 27139
  • Blog 29350
  • betigib's Blog
  • Blog 12890
  • Blog 17179
  • Blog 22718
  • Blog 27141
  • Blog 29352
  • Carl Sagan Videos
  • Blog 12901
  • Blog 17225
  • Wordpress Webhosting
  • Blog 27142
  • Blog 29353
  • great_bear's Blog
  • Blog 17228
  • Blog 22741
  • Blog 27180
  • Blog 29354
  • cocktail dresses
  • Blog 12934
  • Blog 17248
  • Blog 22747
  • Blog 27187
  • Blog 29355
  • Viper2000's Blog
  • Blog 12940
  • Blog 17249
  • Blog 22798
  • Blog 27208
  • Blog 29357
  • spacenut's Blog
  • Blog 12983
  • Blog 17287
  • Blog 22857
  • Blog 27217
  • Blog 29360
  • Vimax Singapore Reviews - Vimax Top Male Enhancement Pills Products
  • Blog 13013
  • Blog 17337
  • Blog 22875
  • Blog 27218
  • Blog 29365
  • alex's Blog
  • Blog 13020
  • Blog 17394
  • Blog 22894
  • Blog 27219
  • Blog 29368
  • supriyaatco's Blog
  • Blog 13026
  • Blog 17398
  • Blog 22970
  • Blog 27223
  • Blog 29369
  • ChrisMseeker's Blog
  • Blog 13061
  • Blog 17490
  • Blog 22971
  • Blog 27224
  • Blog 29382
  • mytelescope's Blog
  • Blog 13080
  • View From Neath
  • Blog 23056
  • Blog 27227
  • Blog 29385
  • mytelescope's Blog
  • Blog 13086
  • Blog 17501
  • Blog 23057
  • Blog 27228
  • Blog 29387
  • what atlas should you get with a 8" dob
  • Blog 13102
  • Blog 17534
  • Blog 23105
  • Blog 27229
  • Blog 29389
  • DIY Pier Project
  • Blog 13103
  • Blog 17536
  • Blog 23122
  • Blog 27252
  • Blog 29392
  • William32's Blog
  • Blog 13107
  • Blog 17545
  • Blog 27275
  • Blog 29395
  • collamition
  • Blog 13113
  • Blog 17560
  • Blog 23154
  • Blog 27278
  • Blog 29398
  • what atlas
  • Blog 13131
  • Blog 17562
  • Blog 23187
  • Blog 27279
  • Blog 29408
  • Round Midnight
  • Blog 13143
  • Blog 17577
  • Blog 23188
  • Blog 27282
  • Blog 29410
  • Steve H's Blog
  • Blog 13176
  • Blog 17580
  • Blog 23195
  • Blog 27284
  • Blog 29412
  • iristrista's Blog
  • Blog 13213
  • Blog 17592
  • Blog 23255
  • Blog 27308
  • Blog 29414
  • iristrista's Blog
  • Blog 13224
  • Blog 17621
  • Blog 23273
  • Blog 27332
  • Blog 29460
  • Gottzi's Blog
  • Blog 13227
  • Blog 17622
  • Blog 23282
  • Blog 27362
  • Blog 29529
  • africankitty's Blog
  • Blog 13252
  • Blog 17627
  • Blog 23329
  • Blog 27370
  • Blog 29563
  • todd8137's Blog
  • Blog 13262
  • Blog 17648
  • Blog 23359
  • Blog 27371
  • Blog 29565
  • Moon man show me your feet
  • Blog 13295
  • Blog 17661
  • Blog 23368
  • Blog 27372
  • Blog 29566
  • Spikey's Blog
  • Blog 13315
  • Blog 17668
  • Blog 23390
  • Blog 27376
  • Blog 29622
  • Steve H's Blog
  • Blog 13324
  • Blog 17683
  • Blog 23405
  • Blog 27377
  • Blog 29651
  • Astronome's Blog
  • Blog 13360
  • Blog 17693
  • Blog 23449
  • Blog 27379
  • Blog 29658
  • crashtestdummy's Blog
  • Blog 13370
  • Blog 17722
  • Blog 23474
  • Blog 27382
  • Blog 29684
  • Sussex Dark Sites
  • Blog 13374
  • Blog 17772
  • Blog 23479
  • Blog 27402
  • Blog 29768
  • My Astrophotography Journey
  • Blog 13376
  • Blog 17776
  • Blog 23491
  • Blog 27403
  • Blog 29771
  • LodestarLive Development
  • Blog 13377
  • Blog 17777
  • Blog 23494
  • Blog 27421
  • Blog 29775
  • Koraki's Blog
  • Blog 13380
  • Blog 17783
  • Blog 23500
  • Blog 27422
  • Blog 29795
  • redgreen1's Blog
  • Blog 13411
  • Blog 17793
  • Blog 23638
  • Blog 27427
  • Blog 29810
  • The Stars Are My Pills
  • Blog 13420
  • Inane ramblings of baldy bain
  • Blog 23649
  • Blog 27428
  • Blog 29822
  • Blog 13422
  • Blog 17842
  • Collimation Craziness!!
  • Blog 27440
  • Blog 29849
  • Johnny4365's Blog
  • Blog 13428
  • Blog 17871
  • Blog 23673
  • Blog 27442
  • Blog 29868
  • stargazer benjji's Blog
  • Buzz buzz buzz !!
  • Blog 17876
  • Blog 23687
  • Blog 27443
  • Blog 29940
  • BexSmyth's Blog
  • Blog 13439
  • Blog 23700
  • Blog 27445
  • Blog 30042
  • whitestar83's Blog
  • Blog 13481
  • Blog 17920
  • Blog 23707
  • Blog 27446
  • Blog 30043
  • GrahamTutt's Blog
  • Blog 13503
  • Blog 17938
  • Blog 23722
  • Blog 27450
  • Blog 30055
  • mart1983's Blog
  • Blog 13509
  • Blog 17949
  • Blog 23747
  • Blog 27480
  • Blog 30099
  • Moox's Blog
  • Blog 13563
  • Blog 17987
  • Blog 23768
  • Blog 27488
  • Blog 30100
  • Jimmy Zhu's Blog
  • Blog 13565
  • Blog 18019
  • Blog 23856
  • Blog 27495
  • Blog 30129
  • Weezy's Blog
  • Blog 13605
  • Blog 18020
  • Blog 23935
  • Blog 27500
  • Blog 30318
  • darry lwall's Blog
  • East Midlands Stargazers
  • Blog 18033
  • Blog 23996
  • Blog 27502
  • Blog 30332
  • Celestial adventures
  • Blog 13675
  • Blog 18061
  • Blog 24038
  • Blog 27505
  • Blog 30403
  • stash_old's Blog
  • Blog 13701
  • Blog 18100
  • Blog 24057
  • Blog 27510
  • Blog 30479
  • My info i dont want to lose
  • Blog 13707
  • Blog 18179
  • Blog 24087
  • Blog 27513
  • Blog 30482
  • Psychobilly's Blog
  • Blog 13732
  • Blog 18181
  • Blog 24104
  • Blog 27521
  • Blog 30506
  • frosty's Blog
  • Blog 13733
  • Blog 18203
  • Blog 24157
  • Blog 27529
  • Blog 30595
  • TFRM's Blog
  • Blog 13741
  • Blog 18222
  • Blog 24198
  • Blog 27545
  • Blog 30617
  • daiwelly's Blog
  • Blog 13749
  • Blog 18236
  • Blog 24213
  • Blog 27559
  • Blog 30618
  • framos41's Blog
  • Blog 13764
  • Blog 18242
  • Blog 24231
  • Blog 27560
  • Blog 30629
  • kjh's Blog
  • Blog 13776
  • Blog 18243
  • Blog 24240
  • Blog 27561
  • Blog 30738
  • dezmo1's Blog
  • Blog 13808
  • Blog 18274
  • Blog 24250
  • Blog 27562
  • Blog 30782
  • PaulCH's Blog
  • Blog 13836
  • Blog 18287
  • Blog 24251
  • Blog 27563
  • Blog 30787
  • Andy's Column
  • Blog 13875
  • Blog 18291
  • Blog 24335
  • Blog 27565
  • Blog 30788
  • DommyDevil18's Blog
  • Blog 13880
  • Blog 18303
  • Blog 24339
  • Blog 27566
  • Blog 30795
  • sidewind's Blog
  • Blog 13884
  • Blog 18313
  • Blog 24394
  • Blog 27567
  • Blog 30812
  • O2B3's Blog
  • Blog 13890
  • Blog 18316
  • Blog 24420
  • Blog 27569
  • Blog 30819
  • Cassiopeia's cat
  • Blog 13907
  • Blog 18364
  • Blog 24483
  • Blog 27579
  • Blog 30929
  • 9988idc's Blog
  • Blog 13953
  • Blog 18369
  • Blog 24515
  • Blog 27586
  • Blog 30958
  • jimmmy's Blog
  • Blog 13959
  • Blog 18384
  • Blog 24533
  • Blog 27593
  • Blog 31027
  • vracelysarux's Blog
  • Blog 13993
  • Blog 18387
  • Blog 24540
  • Blog 27594
  • Blog 31030
  • Compositeman's Blog
  • Blog 14003
  • What have I seen.....
  • Blog 24560
  • Blog 27595
  • Blog 31032
  • Saganite's Blog
  • Blog 14031
  • Blog 18434
  • Blog 24566
  • Blog 27610
  • Blog 31033
  • Saganite's Blog
  • Blog 14037
  • Blog 18444
  • Blog 24582
  • Blog 27611
  • Blog 31037
  • My program in JavaScript related to stars
  • Blog 14099
  • Blog 18533
  • Blog 24603
  • Blog 27613
  • Blog 31039
  • Rogue1892's Blog
  • Blog 14100
  • Blog 18554
  • Blog 24615
  • Blog 27614
  • Blog 31055
  • Langy's Blog
  • Blog 14118
  • Blog 18565
  • Blog 24624
  • Blog 27615
  • Blog 31058
  • dennis65's Blog
  • Blog 14127
  • Blog 18569
  • Blog 24626
  • Blog 27624
  • Blog 31062
  • A Beginers Diary
  • Blog 14132
  • Blog 18573
  • Blog 24627
  • Blog 27633
  • Blog 31135
  • Gary170782's Blog
  • Blog 14160
  • Blog 18581
  • Blog 24637
  • Blog 27637
  • Blog 31260
  • cnapton1981's Blog
  • Blog 14196
  • Blog 18597
  • Blog 24658
  • Blog 27667
  • Blog 31296
  • chocoholicJ's Blog
  • First Contact
  • Blog 18620
  • Blog 24669
  • Blog 27669
  • Blog 31540
  • Blogstronomy
  • Blog 14274
  • Blog 18652
  • Blog 24685
  • Blog 27671
  • Blog 31580
  • SarasotaSean's Blog
  • Blog 14336
  • Blog 18669
  • Blog 24686
  • Blog 27672
  • Blog 31626
  • bestecig's Blog
  • Blog 14350
  • Blog 18679
  • Blog 24696
  • Blog 27673
  • Blog 31781
  • idigitize's Blog
  • Blog 14394
  • Blog 18683
  • Blog 24712
  • Blog 27680
  • Blog 31865
  • jelrichardson's Blog
  • Blog 14400
  • Blog 18691
  • Blog 24718
  • Blog 27686
  • Blog 31875
  • Hoppity's Blog
  • Blog 14401
  • Blog 18715
  • Blog 24748
  • Blog 27688
  • Blog 31876
  • GreatAttractor's Software
  • Blog 14403
  • Blog 18742
  • Blog 24749
  • Blog 27691
  • Blog 31910
  • Tandem master's Blog
  • Blog 14410
  • Blog 18754
  • Blog 24783
  • Blog 27692
  • Blog 32021
  • Evie's info
  • Blog 14418
  • Blog 18774
  • Blog 24844
  • Blog 27695
  • Blog 32085
  • big john 2's Blog
  • Blog 14430
  • Blog 18783
  • Blog 24895
  • Blog 27701
  • Blog 32119
  • cutepetgroomer's Blog
  • Blog 14433
  • Blog 18800
  • Blog 24916
  • Blog 27713
  • Blog 32147
  • Back Yard Observations
  • Blog 14440
  • Blog 18817
  • Blog 24926
  • Blog 27714
  • Blog 32174
  • nicoleanderson's Blog
  • Blog 14473
  • Blog 18819
  • Blog 24947
  • Blog 27716
  • Blog 32243
  • kerrylewis' Blog
  • Blog 14488
  • Blog 18846
  • Blog 24949
  • Blog 27717
  • Blog 32266
  • Confusion
  • Blog 14491
  • Blog 18858
  • Blog 24950
  • Blog 27718
  • Blog 32289
  • prabal's Astronmy log
  • Blog 14509
  • Blog 18933
  • Blog 24957
  • Blog 27721
  • Blog 32336
  • aicellrisf's Blog
  • Blog 14522
  • Blog 18942
  • Blog 24959
  • Blog 27737
  • Blog 32340
  • Lightridges-new version
  • Blog 14529
  • Which end do I look into?
  • ISS Pass
  • Blog 27745
  • Blog 32501
  • Lightbridges-any problems with the new versions?
  • Blog 14535
  • Blog 19052
  • Blog 24975
  • Blog 27749
  • Blog 32696
  • shlljhn's Blog
  • Blog 14569
  • Blog 19055
  • Blog 24979
  • Blog 27751
  • Blog 32843
  • pojara's Blog
  • Blog 14590
  • Blog 19064
  • tibbs1972archive
  • Blog 27752
  • Blog 32883
  • subrata's Blog
  • Blog 14616
  • Blog 19065
  • Blog 25006
  • Blog 27758
  • Blog 32927
  • Stream of Bewilderment
  • Blog 14636
  • Blog 19076
  • Blog 25057
  • Blog 27764
  • Blog 33051
  • 4 Stellar Shows This Week
  • Blog 14647
  • Blog 19082
  • Blog 25061
  • Blog 27788
  • Blog 33104
  • Adamzy's Blog
  • Blog 14654
  • Blog 19083
  • Blog 25065
  • Blog 27795
  • Blog 33147
  • mikeporter's Blog
  • Blog 14672
  • Blog 19101
  • Blog 25077
  • Blog 27835
  • Blog 33175
  • veberlylur's Blog
  • Blog 14708
  • Llama in Space
  • Blog 25079
  • Blog 27869
  • Blog 33239
  • greyhaven's Blog
  • Onwards to Mars, onwards to Mars!
  • Blog 19121
  • Blog 25087
  • Blog 27880
  • Blog 33298
  • Explosions in the Sky
  • Blog 14765
  • Blog 19127
  • Blog 25118
  • Blog 27891
  • Blog 33456
  • kerrylewis' Blog
  • Blog 14790
  • Blog 19131
  • Blog 25119
  • Blog 27930
  • Mike's random stuff blog..
  • Jupiters moons
  • Blog 14838
  • Blog 19147
  • Blog 25136
  • Blog 27934
  • Blog 33529
  • A 'StarGazers' Journey
  • Blog 14840
  • Blog 19159
  • Blog 25176
  • Blog 27938
  • Blog 33610
  • Andrew W's Blog
  • Blog 14845
  • Blog 19171
  • Blog 25202
  • Blog 28008
  • Blog 33879
  • American flyer's Blog
  • Blog 14853
  • Blog 19175
  • Blog 25204
  • Blog 28033
  • Qualia's Blog
  • Jobie's Blog
  • Blog 14854
  • Yet Another Blog
  • Blog 25255
  • Blog 28044
  • Blog 34130
  • andyin2014's Blog
  • Blog 14864
  • Blog 19205
  • Blog 25324
  • Blog 28059
  • Blog 34179
  • Blog 14871
  • Blog 19232
  • Blog 25369
  • Blog 28072
  • Blog 34208
  • meng82's Blog
  • Blog 14888
  • Blog 19264
  • Blog 25373
  • Blog 28150
  • Blog 34209
  • Blog 14893
  • Feeling Through the Darkness
  • Blog 25392
  • Blog 28167
  • Blog 34324
  • chellycowdy's Blog
  • Blog 14922
  • Blog 19270
  • Blog 25394
  • Blog 28168
  • Blog 34348
  • MikeSandersBlog.com
  • Blog 14933
  • Blog 19295
  • Blog 25430
  • Blog 28200
  • Blog 34351
  • Faye's blog
  • Blog 14948
  • Blog 19315
  • Blog 25437
  • Blog 28231
  • Blog 34384
  • dyhan316's Blog
  • Blog 14962
  • Blog 19337
  • Blog 25440
  • Blog 28252
  • Blog 34436
  • mickmurphy's Blog
  • To blog or not to blog that is the question
  • Blog 19346
  • Blog 25456
  • Blog 28261
  • Blog 34474
  • Joey's Blog
  • Blog 14997
  • Blog 19359
  • Blog 25465
  • Blog 28297
  • Blog 34501
  • toftm
  • Blog 14998
  • Blog 19372
  • Blog 25478
  • Blog 28322
  • Blog 34559
  • DSLR journey
  • Blog 15002
  • Blog 19381
  • Blog 25496
  • Blog 28325
  • Blog 34571
  • Alienfox's Blog
  • Blog 15041
  • Blog 19404
  • Blog 25513
  • Blog 28349
  • Blog 34602
  • daveclarke's Blog
  • Blog 15088
  • Small refractor diaries
  • Blog 25532
  • Blog 28359
  • Blog 34663
  • wxsatuser's Blog
  • Blog 15095
  • Blog 19431
  • Blog 25573
  • Blog 28361
  • Blog 34759
  • New Guy
  • Blog 15111
  • Blog 19434
  • Blog 25646
  • Blog 28374
  • Blog 34827
  • A Rush And A Push And The Sky Is Ours or Astronomy, Here We Come
  • Blog 15112
  • Blog 19448
  • Blog 25659
  • Blog 28391
  • Blog 34931
  • Central District Astronomy
  • Blog 19514
  • Blog 25684
  • Blog 28392
  • Blog 35004
  • jefrs' Blog
  • Blog 15185
  • Blog 19538
  • Blog 25715
  • Blog 28395
  • Blog 35021
  • Jocular
  • Solaris
  • Blog 19561
  • Blog 25716
  • Blog 28407
  • Blog 35026
  • Home 2 Heaven
  • Blog 15202
  • Blog 19564
  • Blog 25724
  • Blog 28427
  • Blog 35027
  • Musings from The Fen Edge
  • Blog 15212
  • Blog 19582
  • Blog 25732
  • Blog 28442
  • Blog 35205
  • jimjam11's Blog
  • Blog 15245
  • Blog 19590
  • Blog 25792
  • Blog 28478
  • Blog 35227
  • Luke's Solar Blog
  • Blog 15252
  • Blog 19607
  • Astro Projects
  • Blog 28484
  • Blog 35305
  • Marketing News
  • Blog 15258
  • Blog 19622
  • Blog 25804
  • Blog 28485
  • Blog 35402
  • Laston-Pluto1's Blog
  • Blog 15261
  • Blog 19648
  • Blog 25805
  • Blog 28487
  • Blog 35589
  • DSLR Astrophotography
  • Blog 15315
  • Blog 19650
  • Blog 25807
  • Blog 28488
  • Blog 36067
  • Hither Green Skies
  • Blog 15333
  • Blog 19655
  • Blog 25809
  • Blog 28504
  • Blog 36108
  • Help plz
  • Blog 15346
  • Blog 19684
  • Blog 25824
  • Blog 28505
  • Blog 36236
  • kenny k's Blog
  • Blog 15349
  • Blog 19744
  • Blog 25828
  • Blog 28506
  • Blog 36242
  • kenny k's Blog
  • Blog 15353
  • Blog 19752
  • Blog 25843
  • Blog 28509
  • Blog 36244
  • IenAABQDVmk32Xq's Blog
  • Learner Blog
  • Blog 19753
  • Blog 25862
  • Blog 28510
  • Blog 36245
  • quimby44's Blog
  • Blog 15421
  • Blog 19777
  • Blog 25863
  • Blog 28511
  • Blog 36247
  • ngc6872's Blog
  • Blog 15429
  • Blog 19850
  • Blog 25864
  • Blog 28530
  • Blog 36388
  • Investigate911's Blog
  • Blog 15439
  • Blog 19851
  • Blog 25899
  • Blog 28543
  • Blog 36393
  • BiBi's Blog
  • Blog 15508
  • Blog 19875
  • Blog 25902
  • Blog 28588
  • Blog 36448
  • Bert B's Blog
  • Blog 15511
  • Blog 19932
  • Blog 25912
  • Blog 28589
  • Blog 36546
  • Toward First Light - And Beyond!
  • Blog 15534
  • Blog 19938
  • Blog 25944
  • Blog 28590
  • Blog 36693
  • ToTo123's Blog
  • Blog 15564
  • Just Looking platform project
  • Blog 26014
  • Blog 28619
  • Blog 36718
  • ToTo123's Blog
  • Blog 15569
  • Blog 19999
  • Blog 26042
  • Blog 28632
  • Photosbykev's Blog
  • ToTo123's Blog
  • Blog 15654
  • Blog 20028
  • Blog 26058
  • Blog 28633
  • An Ample Astronomer....
  • The Western Veil Nebula WIP report
  • Blog 15667
  • Blog 20042
  • Blog 26077
  • Blog 28685
  • My test blog
  • Phil42's Blog
  • Blog 15702
  • Blog 20068
  • Blog 26088
  • Blog 28700
  • mr saddo's Blog
  • photopete's Blog
  • Blog 15714
  • Blog 20072
  • Blog 26092
  • VigRX Plus Reviews
  • mr saddo's Blog
  • C31045's Blog
  • Blog 15748
  • Blog 20085
  • Blog 26098
  • Blog 28722
  • Qualia's Blog
  • TraderBoo's Blog
  • Blog 15750
  • Blog 20121
  • Blog 26099
  • Blog 28723
  • The Sailor's Blog
  • Grillo's Blog
  • Blog 15767
  • Blog 20177
  • Blog 26113
  • Blog 28727
  • SGL - how to do stuff.
  • Stub Mandrel's Blog
  • Blog 15792
  • Blog 20204
  • Blog 26132
  • Blog 28730
  • James4's Blog
  • goose35's Blog
  • Blog 15835
  • Blog 20207
  • Blog 26134
  • Blog 28732
  • Polar Bear's Blog
  • ramric's Blog
  • Blog 15842
  • Blog 20229
  • Blog 26138
  • Blog 28740
  • dharma66's Blog
  • ramric's Blog
  • Blog 15876
  • Blog 20251
  • Blog 26156
  • Blog 28770
  • wfyxkfu's Blog
  • GuyR's Blog
  • Blog 15882
  • Blog 20257
  • Blog 26175
  • Blog 28797
  • skywatcher250's 1st light
  • My Nexstar adventures
  • Blog 15917
  • Blog 20289
  • Blog 26194
  • Blog 28810
  • peternb63's Blog
  • goose35's Blog
  • Blog 15936
  • Blog 20314
  • Blog 26199
  • Blog 28830
  • eriksampson24's Blog
  • Parsec's Blog
  • Blog 15955
  • Blog 20327
  • Blog 26235
  • Blog 28844
  • tibbs1972's Blog
  • alan4908's Blog
  • Blog 15956
  • Blog 20343
  • Blog 26238
  • Blog 28865
  • ksmera's Blog
  • Orkney Observatory
  • Blog 15962
  • Blog 20344
  • Blog 26246
  • Blog 28871
  • ksmera's Blog
  • Blog of the beginner
  • Blog 15963
  • Blog 20354
  • Blog 26263
  • Blog 28879
  • vimaxpills' Blog
  • JohnSadlerAstro's Blog
  • Blog 15969
  • Blog 20393
  • Blog 26274
  • Blog 28887
  • gliderpilot's Blog
  • johnisabelle's Blog
  • Blog 15997
  • Blog 20410
  • Blog 26297
  • Blog 28888
  • june's Blog
  • Rastaman88's Blog
  • Blog 16005
  • Blog 20452
  • Blog 26349
  • Blog 28893
  • coatch's Blog
  • Rastaman88's Blog
  • Blog 16016
  • Blog 20464
  • Blog 26354
  • Blog 28916
  • ASTROSTUART's Blog
  • aeajr's Blog
  • Blog 16017
  • Steve's Blog
  • Blog 26386
  • Blog 28920
  • cruizin's Blog
  • auspom's Blog
  • Blog 16040
  • Blog 20530
  • Blog 26422
  • Blog 28932
  • Astro Fascination
  • Skipper Billy's Blog
  • Blog 16060
  • Blog 20539
  • Blog 26424
  • Blog 28939
  • timsmith's Blog
  • BritAngler's Blog
  • Blog 16076
  • Blog 20563
  • Slim Weight Patch Benefits Review
  • Blog 28941
  • Astralstroll's Blog
  • The Awesome Beginners Guide to Astronomy
  • Blog 16096
  • Blog 20568
  • Blog 26448
  • Blog 28949
  • Normanski's Blog
  • The up-to-date guide on stargazing with electronics
  • Blog 16099
  • Blog 20603
  • Blog 26453
  • Blog 28950
  • Online Shopping - Radio Controlled Helicopters and Radio Controlled Cars
  • A Guide to Astronomy- a Personal View
  • Blog 16115
  • Blog 20615
  • Blog 26463
  • Blog 28960
  • DrRobin's Blog
  • MountainSkies Blog
  • Blog 16116
  • Blog 20628
  • Blog 26475
  • Blog 28971
  • lvs' Blog
  • Audi Quatro
  • Blog 16119
  • Blog 20652
  • Muscle Gain Truth Scam Program Review
  • Blog 28983
  • Daniel-K's Blog
  • Chris Cartledge
  • Blog 16125
  • Blog 20701
  • Blog 26497
  • Blog 28988
  • nickdud's Blog
  • Nigel t
  • Blog 16134
  • Blog 20745
  • Blog 26503
  • Blog 29036
  • nathanj89's Blog
  • Kainushi
  • Blog 16137
  • Blog 20814
  • Blog 26517
  • Blog 29041
  • Joseki's Blog
  • Surox's astronomy blog
  • Blog 16142
  • Blog 20851
  • Blog 26529
  • Blog 29042
  • michael001's Blog
  • HridaySabz's blog
  • Blog 16160
  • Blog 20901
  • Blog 26534
  • Blog 29053
  • jacob02's Blog
  • one more blog
  • Blog 16166
  • Blog 20945
  • Blog 26539
  • Blog 29064
  • jacob02's Blog
  • A space enthusiast
  • Blog 16215
  • Blog 20967
  • Fat Loss 4 Idiots Diet eBook Review
  • Blog 29066
  • Lee03's Blog
  • Chris's Backyard Astronomy
  • Blog 16237
  • Blog 20976
  • Fat Loss 4 Idiots Scam Diet Plan Review
  • Blog 29067
  • Marin04's Blog
  • Largest Stars in the Universe
  • Blog 16241
  • Blog 20988
  • newbie trying to take photos
  • Blog 29068
  • purerocket's Blog
  • Largest Stars in the Universe
  • Blog 16249
  • Blog 20994
  • Blog 26554
  • Blog 29069
  • mrstrellis' Blog
  • Jim
  • Blog 16264
  • Blog 21022
  • Blog 26556
  • Blog 29073
  • mrstrellis' Blog
  • Getting started with an EQ mount from the perspective of an Alt/Az imager
  • Blog 16281
  • Blog 21030
  • Blog 26561
  • Blog 29075
  • Andrew's Astronomy Blog
  • "We are made of star stuff..."
  • Blog 16297
  • Blog 21037
  • Blog 26570
  • Blog 29078
  • cobbyr6's Blog
  • Diary of an AstroNat
  • Blog 16298
  • Blog 21042
  • Blog 26577
  • Blog 29080
  • cobbyr6's Blog
  • Blog 16301
  • Blog 21052
  • Blog 26581
  • Blog 29083
  • patriots star's Blog
  • Gina
  • Blog 16315
  • Blog 21086
  • Blog 26583
  • Blog 29084
  • Steve's Blog
  • A Range of DIY 3D Printers
  • Blog 16354
  • Blog 21118
  • Blog 26596
  • Blog 29085
  • Jonathan's Moore Marathon
  • Clocks made with 3D Printed Parts
  • Blog 16370
  • Blog 21148
  • Blog 26672
  • Blog 29087
  • ollie52's Blog
  • Astrophotography Scrapbook #1
  • Blog 16395
  • Blog 21188
  • 31 Day Fat Loss Cure
  • Blog 29093
  • DIY Build - 8.5" reflector
  • The Sculptor Galaxy - NGC 253
  • Blog 16402
  • Blog 21197
  • Blog 26680
  • Blog 29097
  • Miscellaneous Personal Projects
  • Blog 16403
  • Blog 21216
  • Blog 26700
  • Blog 29098
  • ian_d's Blog
  • The Apprentice Astronomer
  • Blog 16410
  • Blog 21238
  • Blog 26710
  • Blog 29099
  • TonyD's Blog
  • Nikon D7500 DSLR for Astrophotography
  • Blog 16416
  • Blog 21254
  • Blog 26711
  • Blog 29100
  • foundaplanet's Blog
  • My Astronomy Activities
  • Blog 16419
  • Blog 21289
  • Blog 26712
  • Blog 29105
  • Planetary Geology
  • Blog 16421
  • Blog 21329
  • Blog 26715
  • Blog 29107
  • melsky's Blog
  • Improving An Aluminium tripod
  • Blog 16430
  • Blog 21391
  • Blog 26744
  • Blog 29108
  • DanielleBishell's Blog
  • Improving An Aluminium tripod
  • Blog 16436
  • Blog 21419
  • Blog 26770
  • Blog 29112
  • A Newbie Returning To The Game
  • Looking Back
  • Blog 16437
  • Blog 21433
  • Blog 26773
  • Blog 29115
  • Robstargazer15's Blog
  • Diary of a beginner
  • Blog 16454
  • Blog 21454
  • Blog 26780
  • Blog 29116
  • Astro Mods and Upgrades
  • My Journey
  • Blog 16459
  • Blog 21493
  • Blog 26790
  • Blog 29117
  • perks2008's Blog
  • Astronomy notes
  • Blog 16471
  • Blog 21498
  • Blog 26792
  • Blog 29119
  • Alf Fraser's Blog
  • Designing and Creating a New Garden with Water Feature
  • Blog 16472
  • Blog 21509
  • Blog 26793
  • Blog 29123
  • Beginner Astronomer's Blog
  • Designing and Creating a New Garden with Water Feature
  • Blog 16491
  • Blog 21515
  • Blog 26794
  • Blog 29126
  • Beginner Astronomer's Blog
  • Designing and Creating a New Garden with Water Feature
  • Blog 16526
  • Blog 21518
  • Blog 26809
  • Blog 29127
  • Mike's Lunar sketches
  • Testing blog creation
  • Blog 16559
  • Blog 21601
  • Blog 26812
  • Blog 29135
  • Avionna's Blog
  • Newbie - 8" Dob
  • Dorset Stargazers's Blog

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Interests


Location

Found 25 results

  1. I bought an Opticstar 2" Manual Filter Wheel and the plan is to stick an arduino controlled stepper motor on the wheel perimeter to turn it. Magnets and hall effect switches will be used to keep track of the position and which filter is active. The mechanical design is done using the open source apps LibreCAD and FreeCAD. G-code for my CNC mill is produced using HeeksCAD and the mill itself is controlled by LinuxCNC. Electronic design is done using the awesome KiCad which recently has had a massive boost by the propeller heads at CERN. The mechanics is almost done. Still need to etch the PCB and put it together before the real fun begins writing the firmware Clear skies, K
  2. Hi I am trying to control my Skytee via stepper motors using a joystick joystick, Ive found a handy YouTube video that controls 2 small stepper motors but these will not be powerful enough, I’m looking to use Nema17 motors via a more powerful driver, just not sure what pins from Arduino to Stepper driver to plug into as in the image attached sketch. Assuming I can replace the ‘ULN2003A ‘ controller with ‘DM332T’ and power the new bigger driver directly with 12v and miss out the 5v power wires going to the ULN2003A that is in the sketch. Appreciate any help. Regards Guy
  3. Been working on this motorised flap flat panel for quite some time already. Thought I'd finally post something about it as I just got the flap opening and closing properly for the first time. I initially designed this around the 28BYJ-48 stepper but that just turned out to be too weak. I did manage it to make it move by converting a 5V version to bipolar mode and driving it with 12V. But as soon as you removed power the gravity would take over and the flap would be a bit too flappy... Keeping the motor energised continuously would have made it too hot over time and it probably would have not lasted very long so I decided to go with a high torque servo instead. This one is using a Hiwonder LDX-227 servo. Seems plenty strong for this application. The flat panel itself is still work in progress. My original idea was to shine the light straight to the edges of the diffusing perspex but that didn't work out very well so I started experimenting with other ideas. At the moment the LED strip ring is hidden behind the diffusing perspex and reflecting off a reflector (aluminum foil on a concave surface). To the eye it looks pretty flat but if I take a photo of it and stretch the levels, you'll start to see a bit of a gradient. Whether this is a problem, I'm not sure... More about this later...
  4. This is actually a project I started back in 2015 but it's been hibernating on the shelf for a number of years (i.e. way too long). Up until now I've been just running my dew heaters full on without any controllers whatsoever. This has not caused me any trouble until recently. I changed the secondary mirror on my Newtonian to a bigger one and also the way it was mounted and heated. It turned out that heating the secondary this way full blast is not a good idea as it would warp the mirror ever so slightly to cause astigmatism. Anyway, here I am trying to complete a project that is way overdue... My idea is to measure the ambient temperature and relative humidity with a DHT22 sensor and calculate a dew point from that with an Arduino which would then in turn control a number of dew heaters (max 4) while measuring their temperatures. The idea is that with empirical experiments I could come up with reliable offsets to keep the optics a couple of degrees above the dew point to prevent fogging. How successful this is going to be; I have no idea... As a bonus the device will also measure the atmospheric pressure. Some photos of where I am at the moment: Here's a KiCad 3D preview of the board(s) I designed Decided to have the PCBs made by JLCPCB for me. The minimum order with them is 5 pieces so if this turns out to be a successful project, I'll have four extra PCB sets available. PM me if you're interested... Here's the real deal soldered. Not too far from the 3D preview All wired up ready for testing and further development. I intend to make this into an INDI device as well so I can log the measurement data...
  5. My attempts at SID monitoring have been languishing for a while due to radio problems, though I have been getting to grips with Arduino and even had a go at building my own. In order to move things along I went to the UKRAA stand at Astrofest and bought the VLF radio kit, their signal generator and the 15V power supply. Last weekend I soldered the board. It wasn’t too difficult following their instructions which are pretty clear. The only fiddly bit was soldering on an SMD capacitor but they also give you a through-hole one as well. Initial tests suggest it is working but I will have a better idea when it is all connected. This weekend I have been working on the housing and hopefully tomorrow get the leads soldered. From left to right will be led power, 15V in, 15V out, antenna in, then analogue -ve and +ve (can be 5V or 2.5V). I am building it as-is, so the first iteration will have the radio running off mains power and in turn the radio will power the Arduino. That seems a bit backwards but I would just like to get logging data. For the time being it will write to an SD card, but the Arduino MKR 1010 looks rather good and comes with WiFi and encryption. That though, is a long way off..! Anyway, this shows progress so far.
  6. So my birthday just past so money to splash on astro stuff , i will have my 1000D modded by juan at cheapastrophotography and also have ordered an autofocuser from deepsky dad https://deepskydad.com/autofocuser i know they can be done DIY but this is a neat package and costs about the same as a SW autofocuser and a hitechastro focusmaster and i`m no electronic wizard and pavel seems to have a good product and works with ascom and confirmed it works with APT i will update in a few weeks time when hopefully i will have received and tried out .
  7. Hi, I want to display FWHM values on a homemade focuser handset over USB from either BYN or Metaguide. Does anyone know if these programs even output their data, and can it be obtained? I have an arduino, and access to some good programmers thankfully.
  8. This will be a thread detailing some of the changes and additions I will be doing to my ASC/Weather Station project. This is version 2.0 as I'll be making some very big changes from the initial project and I think continuing on in the existing thread would not have made much sense. So, I still want to use an APS size sensor as after seeing the quality and light capturing capabilities of the now defunct Opticstar DS-616C XL camera and Meike lens I simply cannot go back to using a smaller lens/sensor combination. One thing is certain, I won't be paying £400 or potentially more for another APS astro sized camera so with that in mind I plan on heavily modifying a Nikon D50 DLSR and use the same lens. I chose the D50 primarily due to it having a CCD sensor (ICX453AQ) very close in specs to the one in the Opticstar (ICX413AQ) and the fact that I got a hold of a fully working body for £25. Now there's a few issues with going down the DSLR route which I plan on addressing as follows: The oversized camera body can be stripped down to bare essentials and fitted in the existing case with some moving of parts around Uncooled, the sensor is quite noisy so to cool it I plan on using the existing Opticstar enclosure with the TEC and hopefully get it purged with Argon to avoid dew formation. Also, since the box will need to be completely sealed to achieve this, there's simply not enough room inside for the main board to which the sensor connects to. The only way around this is using an 39pin 150mm long FPC extension which I managed to find and will be arriving shortly. This means I can have the sensor completely sealed with enough slack in the connection to place the mainboard anywhere I want. The D50 uses the NEF file extension as a "RAW" file format but it's not truly RAW and a heavy median filter is applied to all long exposure images to smooth out the noise. It works great for day to day shots, but in an application such as mine it'll most probably eliminate or severely affect my stars as most of them at the FL I'll be using the camera at will be a few pixels across and the Nikon median filter is very aggressive with such small features. The way around this is what's commonly known as Mode 3 on Nikons. Nikons have a additional Noise Reduction mode which takes the long exposure light first then straight after an equal length dark with the shutter closed, then applies the dark on the light and you get a further noise reduced image which again works very well, but not so much for AP. With mode 3 you essentially have the NR feature on and take an exposure but then immediately shut down the camera after the light has finished exposing. What this does is it causes the camera to dump a REAL RAW image onto the SD card without applying the median filter OR the Noise Reduction process. This obviously results in a much noisier image as expected, but all the stars will still be there and the image in this way can then be dark-subtracted and processed to my liking. I'll post some test shots I've taken to illustrate this. The D50 uses a hybrid shutter, both the CCD electronic shutter and mechanical shutter are used depending I think on the exposure length. If a high enough exposure is used, from what I understand, one can use exclusively the electronic shutter, but for longer exposures the shutters work in conjunction. Now I know the ICX413AQ in the Opticstar is more than capable of taking long exposures solely with its electronic shutter despite the fact that in its datasheet they recommend a mechanical shutter for proper use. So, my thinking is since the D50's sensor is similar to the ICX413AQ the only thing preventing the camera from being able to take any exposure using exclusively the electronic shutter is that its mechanical shutter is in the way and I don't think that the camera would prevent the CCD electronic global shutter itself to still open and close when required. However, this is all a theory at the moment and the only way to confirm it is to test the camera with the sensor outside when the FPC cable arrives. More on this later... In terms of capture software available, the D50 is actually very poor and I could only get digiCamControl to see and control the camera via USB. But I won't be using this as when the camera is hooked up to the PC its SD card is identified as a storage drive and the camera can be used as it would normally with the images appearing on the drive after being written to the SD! Since I'm using my VB app to process the images I would just point the app to that folder and should work. That's all I can think of for now but if and when new ones come up I'll add them here. Next I'll be describing some of the other changes planned.
  9. My diy Onstep GoTo controller is basically an Arduino Mega 2560 with a RAMPS 1.5 shield, rated for 12V normal, 20V max & uses about 2A max. It is powered from a 12V car battery. The lead has crocodile clips at the battery & connects to 5A screw terminals on the RAMPS. When I "power-up" by connecting the clips there is a spark at the terminal. This is expected, but does the sparking reduce the life of my electronics? If so is there a cheap/simple way to reduce or prevent this? I know I could put a switch in the lead but I assume the sparking would then happen inside the switch, making no difference.
  10. Hi, I've been working on a DIY fan for my 10" Skywatcher newt. My plan is to measure the ambient temperature and the mirror temperature with two separate thermistors and control the fan speed depending on the temperature difference. My question is, does it make sense to use the fan if for some reason the ambient temperature is higher than the mirror? The fan is sucking the air out the tube at the moment.
  11. Hi, I would like to share my design of a smart barn door tracker. It is a simple to build isosceles barn door tracker with tangent error correction through a Arduino micro-controller. I have shared all the details about the tracker including the mechanical design, electrical circuit and the software source code here: https://barndoor.spa...ference-design/ If you are interested in the math and other details about a barn door tracker, more details are there in the blog. Also find an online calculator which helps in calculating various parameters while designing a barn door tracker. The blog is here: https://barndoor.space/ M46 and M47 shot with this tracker. 135mm lens, ISO800, 15sec X 200 subs (50 minutes) exposure. Cannon 500D. Comments and suggestions most welcome! Regards, Arun
  12. Hi Guys, I have an old C8-N with drives and a handset with an ST4 port. I'm using an Arduino to do small jobs around my setup like exposure control, electronic focusing, guiding and small GOTOs through the handset (large ones take too long). The first three work nicely, by my GOTO is all over the place and I've just realised that whether I'm looking toward the Eastern horizon or the Western one must mean that I need to invert my Dec movements. Is this the case? Is this the only effect of the meridian flip? The RA axis keeps on chugging (and I don't mean collecting for charity) in the same old direction, but Dec needs be inverted. Is there a proper name for these two modes, like "Western mode" and "Eastern mode", or before and after midnight? What else should I look out for? Thanks Steve.
  13. Ardufocus is a full open source Moonlite compatible focuser. The source is still under heavy development so things move around a bit. To access source code and detailed instructions visit the Github repository, for the 3D objects visit Thing #2446069. Motivation After buying the CCD, filter wheel and filters I was broke but still wanted to have an automatic focuser. Design Goals Moonlite compatible: This was a very important part of the design as I didn't want to spend time and effort dealing with ASCOM and INDI drivers, the Moonlite focuser is a well known, reputable rock solid focuser. The serial protocol used by them was easily reversed engineered (plain ASCII) and most of it was already documented on the Internet. Cheap: Another big point was to made it as cheap as possible recurring to as few parts as needed. That's the reason why the 28BYJ-48 stepper motor was chosen, out-of-the-box using the ULN2003 gives you a really cheap (less than 2€) focuser for medium loads (380gcm). If you require the focuser to driver heavier loads (800gcm) then the motor itself can be modded into a Bipolar stepper motor and driven by the A4988 step stick which will cost you less than 1€. Builder friendly: Using off-the-shelf components such as the Arduino Nano and easily available parts Ardufocus is aimed to be build by anyone with a soldering iron and some patience, no degree in electronics required. Hardware It was built on top of a standard ATmega 328 Arduino such as UNO, Pro or Nano; currently it does not support the Mega or any other ARM based board. BOM 1x Arduino Nano 1x A4988 Stepper Motor Driver Module 1x Electrolytic capacitor 10uF 1x NTC 10K 5% 1x Resistor 1/4W 10K 1x DC Power connector (male, female pair) 1x DB9 connector (male, female pair) 1x 28BYJ-48 Stepper motor 3D printed parts To download and print instructions for the 3D printed parts have a look at the Thing #2446069. A4988 driver with a Bipolar motor Example schematic how to building and Ardufocus using a modded 28BYJ-48 Stepper motor.
  14. Hi Guys, I have a wonderful Arduino that does everything for me. It focuses, exposes, guides, does GOTO and a myriad of other things. It also give me the weather, well really only temperature and humidity. But from that it works out the dew point. Is there any point in waiting until the external temp drops below the dew point before turning on the dew heaters, or should I just leave them on all the time? This is what the output looks like now: "UTC: 2017/07/12 20:22:14 | 17 Deg C | 70 % humidity | Dew point = 11.5 Deg C " It keeps monitoring the conditions every few minutes and it can turn the heater on for me if I like, but should I bother? Maybe it's better on all the time. What do you think? Regards Steve
  15. Imaging season is still a few weeks away up here, but I've started dusting of my gear and upgrading some parts. One step closer to automation is a motor focuser, and I opted for a budget solution. I bought a SkyWatcher DC focuser and built a computer control for it. Since I use INDI for my automation, I had to find a way to connect the focuser to indiserver. A first thought was to use the INDIduino code, but after some coding and testing I found out that this code is very limited and not really supported by indi clients. The Ekos/Kstars focus module can't be used for focus control if you use INDIduino, apparently. But then I stumbled upon an Arduino solution that emulates the MoonLite focuser (http://www.indilib.org/forum/general/283-moonlite-focuser-protocol.html). Unfortunately, this protocol is for a focuser with a stepper motor, whereas the SkyWatcher has a geared DC motor. I had already rewritten some code from stepper to (geared) DC motor, so it was easy to adapt this to the MoonLite based code. My solution consists of the following: hardware: - SkyWatcher DC focuser (only the motor is used, the handbox is replaced by the Arduino) - Arduino UNO - Velleman motor controller shield for Arduino - 9 V power adapter to power the shield - Raspberry Pi software: - Arduino sketch with Geared Motor library (see below for link) - INDI server on RPi, and client (Ekos/Kstars) on Windows I've tested this setup on my SkyWatcher Explorer 150PDS and it runs fine. Unfortunately I haven't been able to test the autofocus, due to absence of astrodarkness and clear skies. Since a DC focuser has no knowledge about the position of the actual focuser, the software assumes that position '0' is all the way in. Maximum position is 25000 for my setup. By default, focus is increased by 100 steps, which is supposed to be 100 ms of motor drive. BTW, the code is in my GitHub repository: https://github.com/wberlo/Arduino_Moonlite_Focuser
  16. I've been whiling away my shipping wait for my hardware by watching and reading about Arduino and Stepper Motor control (Specifically). I was watching one rather informative video where the author hit on another library for the Arduino, AccelStepper. It appears to be a bit simpler than regular Arduino coding, which was attractive to me. But what really brought me running was that it can accelerate and decelerate on either end of the command. Think of it being a Soft Start for a stepper motor running your focuser, or a Filter Wheel. Soft Start? Yes, a Soft Start, and also a Soft Stop. Making your stepper motor gently begin to move, traveling to your selected point, then slowing the travel so it coasts in to what you requested. Soft Start is becoming quite common for a lot of motor driven devices. So my thoughts on it were to program my upcoming Arduino projects with my own Soft Start and Soft Stop to bring the focuser to Step XXX and when trying to toy in a best focus, the automatic Soft Start could aid in getting gentler adjustments. I bounced this idea off of my friend and he said that ramping speed was more for CNC machines and the like. And that tweaking in a focuser was more like around 70 steps to get the human eye to see the difference. I don't know (yet), but it seemed to me making any command gentler on the overall equipment might be a better idea. Arduino (I've been led to believe) doesn't have this Soft Start - Soft Stop in their library yet. If you would like, Here are the links to this idea: The Maker Show by Bret Stateham. If you scroll down on this page, there are quick links to the different parts he covers, including the AccelStepper part. Quick Link to the AccellStepper Part. Or a bit before, where he refers to the Library, and where this software will be if you choose to download it for your Arduino Programming. I did, so it is there when I get my hardware here and actually begin my developing. (I prefer to have things in front of me as I prototype. I'm a hands on kinda guy.) I searched to see if this had been posted here, but found nothing. So I thought I'd offer it up to anyone who might be interested. OK, back to hammering on my brain. (Think: A BB in a Boxcar.)
  17. Hello all, As the title suggests, I am making some plans of building an Arduino powered dew heater. Lately the dew on my telescope has stopped me in my tracks halfway through the night so its time to build some dew heaters. I want the buildup to be very simplistic in design with as little wires and as basic as possible. So far I have the basic supplies and ideas for it. In the sketch below is a very simplistic view of what i have in mind. I am looking at making 4 dew heaters, 1 for either the 250PDS or the ES triplet, 1 for the guide-scope, 2 as Spare or eyepiece heater. They are connected to the control box via a cinch connector, inside the control box we have 4 TIP transistors to switch the dew heaters on/off. These TIP120 transistors are cooled by some air vents in the box and controlled by the Arduino. The temperature sensors will be 1-wire devices which will be able to measure the heat of the dew band. To make sure it does not overheat. An external DHT22 will measure the outside temperature and calculate the Dew-point with the temperature and humidity. With this dew point and the temperature on the temperature probes we can calculate when to turn on the dew heaters. The dew heaters will be controlled via PWM. They will be made of NiChrome wire for the 250PDS and resistors on the smaller triplet and guide-scope. To prevent the Dew-Heaters from short-circuit or over-heating we also plan to place a fuse between the TIP120 and the Dew-Heaters themselves. This fuse will be of around 3.75A. (can be changed at a later point) I added a simple scheme to show what I mean. For the sharp people, in one of the pictures is a Arduino Uno, we chose to use this as it is bigger and a base for future Arduino projects. We will keep everyone here updated as the project develops and gets more automated! Clear Skies! Buikimaging
  18. Hi all I have an idea for a little fun project that I hope will get me a good inroad into Arduino and electronics - but need a starting hand! So, what I'm thinking is to build a portable power box that houses the USB ports, power switches for the mount and camera, etc, but also has a 2-line LCD display showing a variety of different measurements from the system - Voltage, Current, Temperature, Dew Point, LST, and eventually reading the mount for DEC and RA position. Possibly!! The power box has a 7-port 12v USB hub, 1 USB input, 2 x 12v inputs each one supplying 3 outputs. There will be a button to cycle through the different sets of readings. One of the USB ports will be used for the Arduino, the others will be mount, camera, guide camera, focuser and SQM Reader. One of the 12v supplies will feed the mount and camera, the other will be for the dew controller and any other 'dirty' outputs needed. Power supplies will be a 13.8v Maplin bench supply (5amp, 7amp burst) - for the mount and camera side, and then another 12v 5amp for the 2nd inputs (don't have this yet...). So, first step is get the Arduino to read the voltage and current from the two circuits. So, from digging around, I think an ACS712 is what I need to measure the current. Now the questions... 1) Are the eBay ACS712's OK to use? 2) For the voltage measurement, will a voltage divider be sufficient, or should I look for a dedicated module? Absolute accuracy is not vital I guess... 3) Other than fuses on all the lines, is there anything else I should look at for current protection for the Arduino? I don't have a shopping list yet as I still have lots to think about, of course, so any recommendations on the LCD (HD44780 based one?), or anything else, feel free to shout! Thx
  19. For the past couple of months I've been working on a project which I named Arduheater. Arduheater is a full open source intelligent heat strip controller for astronomy usage. Source code is available at: https://github.com/jbrazio/arduheater The main design goals were: Remotely controllable This was a very important part of the design, most heat controllers, specially the DIY ones, rely on the PWM signal for each channel being manually adjusted by means of a potentiometer. This either requires the user to be near the device tweeking it or to set it to a temperature that may be higher than the one really needed thus completely trashing efficiency. Arduheater uses a serial connection so you can use any USB-Serial-TTL dongle to adjust it's settings either you're 2 or 2000 meters away. Efficient energy usage Manual adjusted heater will either require the user to be tweeking it or they will wast more energy than necessary due to the general tendency to use a higher that required setpoint, this is valid for any PWM or bang-bang style controllers. Arduheater uses a temperature sensor (DHT22) to measure basic environmental properties such as temperature and humidity, knowing them both makes the calculation of the dew point[1] possible. Arduheater also has a temperature sensor (NTC) for each heating strip, allowing the micro-controller to have a rough estimation of the temperature the equipment is at; it will be a rough estimation because we are really interested on the lenses surface temperature but we are actually measuring the heat strip temperature, to mitigate this, Arduheater allows the user to set specific offsets per heating strip. Arduheater uses a PID controller[2] to efficiently manage the energy so only the required amount of energy to maintain a temperature setpoint is delivered to the heating strip. This is possible due the usage of a PWM signal while driving the outputs; the delta between the environmental dew point (plus offset, i.e. setpoint) and the heating strip temperature will make the micro-controller output a PID-calculated PWM signal until this delta reaches zero. In practical terms if a 12V heating strip full on consumes 12W of power (1A) it may be possible for it to use only 1W or even less to keep the equipment above dewpoint and the power usage will be automatically updated during the night as conditions vary, so the system will be always using the least amount of power to keep the dew away. Builder friendly Using off-the-shelf components such as the Arduino Nano and easily available parts Arduheater is aimed to be build by anyone with a soldering iron and some patience, no degree in electronics required. Allow up to four independent heat outputs Each of the four outputs have independent controls such as offset, min and max output power and of course the three main properties of the PID controller (Kp, Ki and Kd). Here are some shots of the bench prototype using a power resistor as the heating element and it's serial configuration interface: The "field" prototype on it's box: The heating strips (more build info will be provided further ahead): And of course all of this would not be possible without the usage of the force. ;-) I hope someone may find this project useful. I'll keep this thread updated as soon as I'm able to release the source code, schematics and build instructions. [1] Dew point is that dreadful threshold at which water condensation starts to happen on the lenses/equipment. [2] A proportional–integral–derivative controller (PID controller) is a control loop feedback mechanism (controller) commonly used in industrial control systems.
  20. I thought I would share with you last summer's project to add set-point cooling to my DSLR. It took about 3 months and wasn't actually required much over the cold winter months. I've made a few minor changes since the winter. The original white-on-blue display packed up so I replaced it with this black-on-green one. And the original ball-bearing fan introduced vibration when using my SCT (not apparent on my other scopes), so I've replaced it with a MagLev/vapo type. Unfortunately I haven't had any clear skies to test the new fan... My main design criteria were: Cold-finger/peltier cooling As little 'destruction/deconstruction' of the camera as possible - I wanted it to still look like a DSLR Achieve 5-10 C set-point cooling, as I felt this gave acceptable low noise Include a dew heater/indicator for the front filter Arduino controlled with display to provide useful feedback on settings and simple controls I give due credit to Gina and Rowland Cheshire, having read their many inspirational posts on cooling (both here and on Ice in space) which helped me to hone my design. Image with the camera shows fan-heatsink-peltier-bracket construction. The connection box is screwed to the tripod mounting. The white sensor measures ambient temperature and RH. The controller images show approaching the set-point and at set-point. A red LED above the main display lights up when the dew heater is active. The display shows: Set = desired set-point temperature CMOS = temperature of cold-finger close to sensor Fltr = temperature of front filter Dew = number of degrees above the dew point to maintain the dew heater TEC = heatsink temperature (hot side of peltier) PWM = percentage output sent to the peltier (I've limited it to 90% max) Am = ambient temperature, DP= dew point, RH = relative humidity At some point I will tidy the heatsink side to conceal the cables, etc. John
  21. Well after making the 4th PCB for my dew controller and now using an Arduino Mega with a shield to mount all the regulators/MOSFETs etc I was struggling to get accuracy when drilling the holes for the components. Drilling 34 holes for an IDC connector by eye wasn't good enough and was difficult to mount the component. I bit the bullet and got hold of a Proxxon MF70 CNC Mill. It has only got a small bed but I already have a manual one and the accuracy of the table lead screws is very good with a nice solid cast iron base plus the size is convenient for table top use. I'm using an Arduino Uno with a ready made CNC shield of which 4 A4988 stepper motor drivers plug straight in with grbl software on the Uno After wiring up a test of the software (steep learning curve on G Code) using FlatCAM and bCNC - the X and Y axis homed on command but the Z axis carried on and hit the top of the pillar crushing the limit switch. Luckily Maplins stock these switches so replaced easily. Before connecting the Stepper I tested out the Z limit switch but the logic wasn't registering it. A simple button code showed that the arduino was seeing the switch change state so it must be something in the grbl code. After a lot of search and browsing the source code I found out why. The lasted version of grbl V0.9 changed the pin for the Z limit switch. The shield uses Pin 11 but this was swapped to Pin 12 to enable a PWM spindle control on Pin 11. After rewriting the code I had a working z axis homing command. So to my first CNC job was to mill out the plastic front panel for the box to house the control and PS. Unfortunately I had the spindle to fast so it started to melt the swarf which scuffed up the surface - but the good thing about CNC is that you can stop the job and clear the melted on swarf from the bit and carry on from where you started. Time wise it probably took a bit longer from designing in AutoCAD to creating the G Code to finishing the job but the cuts were accurate with none of the usual by hand mishaps and mis-shapen holes -- Mark
  22. I've read through just about all of the threads relating to Arduino based focusers and building one is definitely something I'm going to have a go at. A 'version' I haven't seen yet is one using rotary encoders...so I'm guessing there's probably a reason for it! But here goes... My idea was to use 2 rotary encoders to control the stepper. One encoder for coarse focusing and the other one for fine adjustment. Something like this : In theory the coarse encoder would move the stepper a larger number of steps and the fine one would be single (or half) step. I did toy with the idea of using potentiometers (connected to the analogue inputs) instead of rotary encoders but thought the 360° rotation of the encoders would be more suitable. As my knowledge of programming is on a par with my guinea pig's, I'd like to know if the idea is feasible or not before attempting to blatantly copy and modify the various (rather brilliant) sketches and ideas from southerndiver357, yesyes, Gina etc. Any comments would be gratefully received.
  23. I have been toying with the idea of upgrading to mono CCD imaging for a while, after spending a lot of time looking around the forums I have decided to go for it. I have decided to go for the Atik 460EX, being quite a large amount of money and the need for a filter wheel to go with it I have decided to try and build the filter wheel. It will need to be as thin as possible to fit my newt, I will be using an Arduino to controll it and at a later date I might have a go at making it ascom compatible, but that will probably be pushing my abilitys too far! I have made a start with it, and there is still a long way to go, but I thought I would post my progress so far to see what input anyone has . I have started things off with a small stepper motor I salvaged from a printer, this had a small nylon gear on it so I punched a wheel from 3mm alloy at work and went about cutting the teeth to mesh with the gear. As luck would have it the gear matched up with the 1.25mm pitch of an M8 bolt, so I used an M8 spiral flute tap to cut the thread. I then made up a hub using a bearing I had, and had it anodised black so that i could be put together. This all went together ok but left me the problem of holding the 1.25" filters in place. I went in to my local telescope shop and managed to get some old eye piece barrels (thanks Charls ), then parted them off into 3mm thick sections. They will be glued into the wheel later to screw the filters in. I have now made a front and rear cover roughly to the shape and size I will need, they are held together with 16mm stand offs. I fitted the stepper to the case and gave it a try using the stepper focuser I made following the SGL automation design and code. The stepper motor is 12v 9.6 ohms motor, it turned the wheel with no problems and needed 22386 steps to turn the wheel one rotation, this took just under 6 secounds. I had to space the wheel 2mm from the hub to allow the motor to engage the wheel and allow enough space for the filters. I am now looking at sensors for the home position, I have ordered a hall sensor from here, http://www.hobbytron...l-effect-switch and some 2mm magnets from here, http://www.ebay.co.u...984.m1439.l2649 to try. I have also ordered an easydriver board to drive the stepper motor as the focuser setup worked so well with it. There is still a long way to go, I need to sort out the home position, I can then count steps to each fiter. The punched wheel is bowed from the punching, I think I will need to machine it from scratch, I wil get it all working with this wheel first. I will need to conect my skywatcher coma corrector to one side and the camera to the other, this will need M48 and M42 threaded adaptors making, but I am unable to cut metric threads on my lathe, so I will need to adapt some existing fittings or pay to have them cut! Any thoughts/ ideas are very welcome Thanks for looking Jason.
  24. So, finally my DIY arduino SQM is finalized, it is not calibrated yet, but hang in there, i will do so in the near future... But first i want to point out that i didn't want any scientific grade SQM but just a simple tool that i can use to compare different photo-sites around my home-town here in Sweden Feel free to Use it as you want to, if you wan't to calibrate it, change the value at: const float A = 22.0; More pictures and code are available at SGL's Yahoo-site. The parts needed for this is: Arduino approx. 30USD Light to freq-sensor: TSL237 - electrical component shop 5 USD 0.1-0.01uF capacitator 20 degree lens - ebay 1USD UV/IR-cut filter between the lens and the sensor - ebay 1 USD Some kind of housing and cables/connectors The lens is mounted to a plastic cover with superglue, the UV/IR filter is mounted underneath it and underneath that, the sensor. The sensor has three connectors, one gnd, one vdd and one signal, so it quiet simple to connect, you should use a capacitator to stabilize the +5v. Here is a video of it how it works (not the best quality i'm afraid. And here is the code: The libraries you need is at the top of the code. // Author: Daniel Sundström and Ola Karlsson, Arvika, Sweden #include <FreqMeasure.h> #include <Math.h> #include <LiquidCrystal.h> float Msqm; const float A = 22.0; int buttonSQM = A2; int val = 0; int reading = 0; int percentage = 0; LiquidCrystal lcd (12, 11, 10, 9, 7, 6); void setup() { pinMode(buttonSQM, INPUT_PULLUP); digitalWrite(buttonSQM, HIGH); lcd.begin(16,2); Serial.begin(19200); } double sum=0; int count=0; void loop() { val = digitalRead(buttonSQM); if (val == LOW) { reading = 1; lcd.clear(); FreqMeasure.begin(); while(reading) { if (FreqMeasure.available()) { // average several reading together sum = sum + FreqMeasure.read(); count +=1; percentage = count/31.0*100.0; lcd.setCursor(0,0); lcd.print("Reading"); lcd.setCursor(8,0); lcd.print(percentage); lcd.setCursor(11,0); lcd.print("%"); if (count > 30) { double frequency = F_CPU / (sum / count); sum = 0; count = 0; Msqm = A - 2.5*log10(frequency); //Frequency to magnitudes/arcSecond2 formula lcd.clear(); lcd.setCursor(0,0); lcd.println("Mag/As2: "); lcd.setCursor(9,0); lcd.print(Msqm); delay(5000); lcd.clear(); reading = 0; FreqMeasure.end(); } } } } }
  25. Can anyone offer advice or pointers for making a DC Stepdown Voltage Regulator? I would like to take a nominal 13V DC supply from a regulated transformer or Power Tank and provide 5V DC 1A (to power 2-3 arduino nano V3s) and 2V DC 6A outputs (which will provide power for a small TEC, via a Logic N Channel Mosfet - FQP30N06L). I'm keen to avoid too many wires, so ideally this would fit in a single project box with the controllers and not generate too much heat - but it could also be two small project boxes mounted back to back. Actually it might be useful to have a little more 5V to power a small USB hub.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue. By using this site, you agree to our Terms of Use.